Mathematical Sciences International Research Journal: Vol 3 Spl Issue (2014) ISSN 2349-1353

COMPARATIVE ANALYSIS OF MACHINE LEARNING
TECHNIQUES FOR SOFTWARE RELIABILITY
PREDICTION

BONTHU KOTAIAH, T. ARUNDHATHI,
PATHAN MEHRA JAHAN

Abstract: In our paper, we try to discuss the models which are developed
to accurately forecast software reliability. Various intelligent techniques
(back propagation trained neural network, dynamic evolving neuro-fuzzy
inference system and TreeNet) based models are discussed and presented.
Three linear ensembles and one non-linear ensemble are designed and
tested. Based on the experiments performed on the software reliability
data obtained from literature, it is observed that the non-linear ensemble
outperformed all the other ensembles and also the constituent statistical
and intelligent techniques for the effective assessment of software
reliability.

Keywords: Software reliability, Assessment and forecasting; Operational
risk; Assemble forecasting model; Machine Learning Techniques; Soft
computing; Neural Networks, Fuzzy Systems.

Introduction: Software reliability is defined as the probability of failure-
free software operation for a specified period of time in a specified
environment (ANSI definition). Software reliability modeling has gained a
lot of importance in the recent years. Criticality of software in many of the
present day applications has led to a tremendous increase in the amount
of work being carried out in this area. The use of intelligent neural
network and hybrid techniques in place of the traditional statistical
techniques have shown a remarkable improvement in the prediction of
software reliability in the recent years. Among the intelligent and the
statistical techniques it is not easy to identify the best one since their
performance varies with the change in data.

In this paper, an ensemble-based approach is followed in predicting
software reliability. Specifically, a non-linear ensemble trained using back
propagation neural network (BPNN) is proposed. The proposed approach
takes the advantage of all the techniques’ prediction capabilities towards

International Multidisciplinary Research Foundation 977

Mathematical Sciences International Research Journal: Vol 3 Spl Issue (2014) ISSN 2349-1353

the data and appropriately assigns weights to each of the techniques
based upon their performance.

The rest of the paper is organized in the following manner. In Section 1, a
brief review of the works carried out in the area of software reliability
prediction in research is presented. In Section 2, the various stand-alone
intelligent methods that are applied in this paper are described briefly. In
Section 3, the four ensembles that are developed are presented. Section 4
presents the experimental methodology; discussion of the results is
presented in Section 5. Finally, Section 6 concludes the paper.

Literature survey: In the last few years many research studies has been
carried out in this area of software reliability modeling and forecasting.
They included the application of neural networks, fuzzy logic models;
Genetic algorithms (GA) based neural networks, recurrent neural
networks, Bayesian neural networks, and support vector machine (SVM)
based techniques, to name a few. Cai et al. (1991) advocated the
development of fuzzy software reliability models in place of probabilistic
software reliability models (PSRMs). Their argument was based on the
proof that software reliability is fuzzy in nature. A demonstration of how
to develop a fuzzy model to characterize software reliability was also
presented. Karunanithi et al. (1992) carried out a detailed study to explain
the use of connectionist models in software reliability growth prediction.
It was shown through empirical results that the connectionist models
adapt well across different datasets and exhibit better predictive accuracy
than the well-known analytical software reliability growth models. Sitte
(1999) made a comparative study of neural networks and parametric-
recalibration models in software reliability prediction and found neural
networks to be much simpler to use and also to be better predictors. Also,
through empirical results it was shown that the neural network models
are better trend predictors. Ho et al. (2003) performed a comprehensive
study of con- nectionist models and their applicability to software reli-
ability prediction and found them to be better and more flexible than the
traditional models. A comparaitive study was performed between their
proposed modified Elman recurrent neural network, with the more
popular feed forward neural network, the Jordan recurrent model, and
some traditional software reliability growth models. Numerical results
show that the proposed network architecture performed better than the
other models in terms of predictions. Despite of the recent advancements
in the software reliability growth models, it was observed that different

ISBN 978-93-84124-16-8 978

COMPARATIVE ANALYSIS OF MACHINE LEARNING TECHNIQUES

models have different predictive capabilities and also no single model is
suitable under all circumstances.

Tian and Noore (2005a) proposed an on-line adaptive software reliability
prediction model using evolutionary connectionist approach based on
multiple-delayed-input ~ single-output architecture. The proposed
approach, as shown by their results, had a better performance with
respect to next-step predictability compared to existing neural network
model for failure time prediction. Tian and Noore (2005b) proposed an
evolutionary neural network modeling approach for software cumulative
failure time prediction. Their results were found to be better than the
existing neural network models. It was also shown that the neural
network architecture has a great impact on the performance of the
network. According to Bai et al. (2005) Bayesian networks show a strong
ability to adapt in problems involving complex variant factors. They
developed a software prediction model based on Markov Bayesian
networks, and a method to solve the network model was proposed.
Reformat (2005) proposed an approach leading to a multitechnique
knowledge extraction and development of a comprehensive meta-model
prediction system in the area of corrective maintenance of software. The
system was based on evidence theory and a number of fuzzy-based
models. In addition they carried out a detailed case study for estimating
the number of defects in a medical imaging system using the proposed
approach. Pai and Hong (2006) have applied support vector machines
(SVMs) for forecasting software reliability where simulated annealing (SA)
algorithm was used to select the parameters of the SVM model. The
experimental results show that the proposed model gave better
predictions than the other compared methods. Su and Huang (2006)
showed how to apply neural networks to predict software reliability. Fur-
ther they made use of the neural network approach to build a dynamic
weighted combinational model (DWCM) and experimental results show
that the proposed model gave significantly better predictions. Also
recently, neural networks were applied for predicting faults in object-
oriented software (Kanmani et al., 2007). The study showed neural
network models to be performing much better than the statistical
methods.

Application of intelligent techniques in place of the statistical techniques
has increased by leaps and bounds in the recent years. Application of Soft
Computing techniques in software reliability engineering has come up

IMRF Journals 979

Mathematical Sciences International Research Journal: Vol 3 Spl Issue (2014) ISSN 2349-1353

recently (Madsen et al., 2006). Despite the recent advancements in the
software reliability growth models, it was observed that different models
have different predictive capabilities and also no single model is suitable
under all circumstances. An ensemble uses the output obtained from the
individual constituents as inputs to it and the data is processed according
to the design of the arbitrator lying at the heart of the ensemble.
Overview of the techniques applied: The following techniques are
applied to predict software reliability (i) generalized regression neural
network (GRNN), (ii) dynamic evolving neuro-fuzzy inference system
(DENFIS). All these machine learning techniques are very popular in
effectively assessing the Software Reliability. All these two constituents of
the ensembles are described briefly in the subsequent subsections.
Generalized regression neural network (GRNN): Specht(1991)
introduced GRNN. It can be thought of as a normalized radial basis
function (RBF) network in which there is a hidden unit centered at every
training case. These RBF units are called “kernels” and are usually prob-
ability density functions such as the Gaussian. The hidden- to-output
weights are just the target values, so the output is simply a weighted
average of the target values of training cases close to the given input case.
The only weights that need to be learned are the widths of the RBF units.
These widths (often a single width is used) are called “smoothing
parameters” or “bandwidths” and are usually chosen by cross-validation
or by more esoteric methods that are not well known in the neural net
literature; gradient descent is not used. GRNN is a universal approximator
for smooth functions, so it should be able to solve any smooth function-
approximation problem given enough data. The main drawback of GRNN
is that, like kernel methods in general, it suffers badly from the curse of
dimensionality. GRNN cannot ignore irrelevant inputs without major
modifications to the basic algorithm. GRNN available in MAT- LAB 6.5
was used in the paper.

Dynamic evolving neuro-fuzzy inference system (DENFIS): DENFIS
was introduced by Kasabov (2002). DENFIS evolve through incremental,
hybrid (supervised/unsupervised) learning, and accommodate new input
data, including new features, new classes, etc., through local element
tuning. New fuzzy rules are created and updated during the operation of
the system. At each time moment, the output of DENFIS is calculated
through a fuzzy inference system based on most activated fuzzy rules,
which are dynamically chosen from a fuzzy rule set. A set of fuzzy rules

ISBN 978-93-84124-16-8 980

COMPARATIVE ANALYSIS OF MACHINE LEARNING TECHNIQUES

can be inserted into DENFIS before or during its learning process. Fuzzy
rules can also be extracted during or after the learning process.

Ensemble forecasting models: The idea behind ensemble systems is to
exploit each constituent model’s unique features to capture different pat-
terns that exist in the dataset. Both theoretical and empirical works
indicate that ensembling can be an effective and efficient way to improve
accuracies. Bates and Granger (1969) in their seminal work showed that a
linear combination of different techniques would give a smaller error
variance than any of the individual techniques working in stand-alone
mode. Since then, many researchers worked on ensembling or combined
forecasts. Makridakis et al. (1982) reported that combining several single
models has become common practice in improving forecasting accuracy.
Then, Pelikan et al. (1992) proposed combining several feed-forward
neural networks to improve time series forecasting accuracy. Some of the
ensemble techniques for prediction problems with continuous dependent
variable include linear ensemble (e.g., simple average; Bene- diktsson et
al., 1997), weighted average (Perrone and Cooper, 1993) and stacked
regression (Breiman, 1996) and non-linear ensemble (e.g., neural-
network-based nonlinear ensemble (Yu et al., 2005)). Hansen et al. (1992)
reported that the generalization ability of a neural network system could
be significantly improved by using an ensemble of a number of neural
networks. The purpose is to achieve improved overall accuracy on the
production data. In general, for classification problems, an ensemble
system combines individual classification decisions in some way, typically
by a majority voting to classify new examples. The basic idea is to train a
set of models (experts) and allow them to vote. In majority voting scheme,
all the individual models are given equal importance. Another way of
combining the models is via weighted voting, wherein the individual
models are treated as unequally important.This is achieved by attaching
some weights to the prediction given by the individual models and then
combine them. Olmeda and Fernandez (1997) presented a genetic
algorithm based ensemble system, where a GA determines the optimal
combination of the individual models so that the accuracy is maximized.
Zhou et al. (2002) carried out a detailed study on ensembling neural
networks and proposed that using a set of neural networks to form an
ensemble is better than to use all the neural networks. They proposed an
approach that can be used to select the neural networks to become part of
the ensemble from the available set of neural networks. Genetic algorithm

IMRF Journals 981

Mathematical Sciences International Research Journal: Vol 3 Spl Issue (2014) ISSN 2349-1353

was used to assign weights to the constituent networks.

It is generally the case that for a given dataset one kind of intelligent
technique outperforms the other and the results can be entirely opposite
when a different dataset is used. In order not to lose any generality and
also to combine the advantages of the intelligent techniques, an ensemble
uses the outputs of all the stand-alone intelligent techniques with each
being assigned a certain priority level and provides the output with the
help of an arbitrator.

An ensemble uses the output obtained from the individual constituents as
inputs to it and the data is processed according to the design of the
arbitrator. Four different variants of ensembles are designed and
employed as shown in Figs. 1 and 2. These include (i) linear ensemble
based on average, (ii) linear ensemble based on weighted mean, (iii) linear
ensemble based on weighted median, and finally (iv) a non-linear
ensemble based on BPNN. These ensembles are described briefly below.

GRNN
Average/Mea outout
DENFIS n/Median
Fig.1: Generic design of Linear ensemble.
GRNN
Backpropagation Output
DENFIS Neural

Fig.2: Generic design of Non Linear ensemble.

Linear ensemble based on average: For each observation, the output

ISBN 978-93-84124-16-8 982

COMPARATIVE ANALYSIS OF MACHINE LEARNING TECHNIQUES

values of the individual components are taken as the input to the
ensemble and the average of these values is output by the ensemble. This
is the simplest kind of ensemble one can imagine.

Linear ensemble based on weighted mean: In this ensemble, the
individual output values are not taken as they are but are given weights
based upon certain criteria set by the user. In this case, the criteria of
setting the weightages is based on the mean of the normalized root mean
square error (NRMSE) values over the individual lags on the test data. The
lower the mean the higher the weight age with the condition that the sum
of all the weights is equal to one. This helps in setting the priority towards
a technique based on its performance.

Linear ensemble based on weighted median: It is similar to the linear
ensemble based on weighted mean, except that the median of the NRMSE
values of the individual techniques on the test data is considered in
assigning the weight ages instead of the mean of the values.

Neural network based non-linear ensemble: Here, no assumptions are
made about the input that is given to the ensemble. The output values of
the individual techniques are fed into an arbitrator, which is a back
propagation neural network (BPNN) which when trained, assigns the
weights accordingly.

Experimental design: Because software reliability forecasting has only
one dependent variable and no explanatory variables in the strict sense
and since we have a time-series, we followed the general time series
forecasting model in conducting our experiments, which is represented in
the following form (as shown in Eq. (1)):

X, = (X) (1)

where X' is vector of lagged variables {x.., X, ..., X.p}. Hence the key to
finding the solution to the forecasting problems is to approximate the
function ‘f. This can be done by iteratively adjusting the weights in the
modeling process.

An illustration of how training patterns can be designed in the neural
network modeling process is provided in Fig. 3 (Xu et al. (2003)). In this
figure, ‘p denotes the number of lagged variables and (t-p) denotes the
total number of training samples.In this representation, ‘X' is a set of (t-p)
vectors of dimension ‘p and ‘Y is a vector of dimension (t-p). Thus, in the
transformed data set, ‘X' and ‘Y' represent the vector of explanatory
variables and dependent variable, respectively.

In this study, the software failure data, presented in Table 1, is obtained

IMRF Journals 983

Mathematical Sciences International Research Journal: Vol 3 Spl Issue (2014) ISSN 2349-1353

from Musa (1979). It is used to demonstrate the forecasting performance
of the proposed ensembles.

X Y
X, X, Xp Xpii
X, X; Xpii Xpia
X, X, Xpz Xpis
Xep Xepn v X Xt

Fig. 3. Design of the training patterns.

The data contains 101 observations of the pair (¢, Yt) pertaining to
software failure. Here Yt represents the time to failure of the software
after the t th modification has been made. SPSS 14.0 obtained from
(http:// www.spss.com) was used to find the optimal lag for the given
time-series data. We performed the tests of ‘auto correlation function” and
‘partial auto correlation function’ as prescribed by Box-Jenkins
methodology in Time series forecasting using SPSS 14.0 software on the
data set and found that lag 1 was sufficient for the data set. However, we
wanted to investigate whether NRMSE values would improve further
when we go for higher lags and we tested up to lag 5. In view of the
foregoing discussion on generating lagged data sets out of the original
time series such as this, we created five datasets corresponding to lag # 1,
2, 3, 4 and 5, respectively.

ISBN 978-93-84124-16-8 984

COMPARATIVE ANALYSIS OF MACHINE LEARNING TECHNIQUES

Table 1 Data of software failures

Yt t Yt t Yt
5.7683 34 110.6301| 68 12.5982
9.5743 35 | 8.3333 | 69 12.0859

9.105 36 | 11315 | 70 12.2766
7.9655 37 194871 | 71 11.9602
8.6482 38 |8.1391 | 72 12.0246
9.9887 39 | 8.6713 | 73 9.2873
10.1962 | 40 | 6.4615 | 74 12.495
11.6399 | 41 | 6.4615 | 75 14.5569
11.6275 | 42 | 7.6955 | 76 13.3279
6.4922 43 | 47005 | 77 8.9464
10 7.901 44 110.0024| 78 14.7824
11 10.2679 | 45 |11.0129] 79 14.8969
12 7.6839 46 110.8621| 80 12.1399
13 8.8905 47 194372 | 81 9.7981
14 9.2933 48 | 6.6644 | 82 12.0907
15 8.3499 49 19.2294 | 83 13.0977
16 9.0431 50 | 8.9671 | &4 13.368
17 9.6027 51 |10.3534] 85 12.7206
18 9.3736 52 110.0998| 86 14.192
19 8.5869 53 [12.6078| 87 11.3704
20 8.78717 54 | 7.1546 | 88 12.2021
21 8.7794 55 [10.0033| 89 12.2793
22 8.0469 56 | 9.8601 | 90 11.3667
23 10.8459 | 57 | 7.8675 | 91 11.3923
24 8.7416 58 |10.5757| 92 14.4113
25 7.5443 59 110.9294| 93 8.3333
26 8.5941 60 |10.6604| 94 8.0709
27 11.0399 | 61 [12.4972] 95 12.2021
28 10.1196 | 62 |11.3745| 96 12.7831
29 10.1786 | 63 |[11.9158| 97 13.1585
30 5.8944 64 | 9.575 | 98 12.753
31 9.546 65 110.4504| 99 10.3533
32 9.6197 66 |10.5866| 100 12.4897
33 10.3852 | 67 |12.7201

O |0 AN N[(R|N|—D

Since it is a time-series data, performing 10-fold cross validation does not

IMRF Journals 985

Mathematical Sciences International Research Journal: Vol 3 Spl Issue (2014) ISSN 2349-1353

make sense, as it involves randomly choosing samples into the folds and
then the time aspect of the data gets obscured and overlooked. 10-fold
cross validation is extremely powerful and useful in assessing the
performance of a model, provided we do not deal with time series or
spatial series data. Hence, we carried out hold-out method of testing viz.,
splitting the data set into 80% and 20%, respectively for training and
testing. In fact, this check is included in many popular commercial data
mining/statistical tools. The training data is used to identify the optimal
parameters for the model that satisfy the given error criteria and those
parameters are the used to forecast values on the test set. The value of
normalized root mean square error (NRMSE) is used as the measurement
criteria.

Root mean square error (RMSE): The Root Mean Square Error (RMSE)
(also called the root mean square deviation, RMSD) is a frequently used
measure of the difference between values predicted by a model and the
values actually observed from the environment that is being modelled.
These individual differences are also called residuals, and the RMSE serves
to aggregate them into a single measure of predictive power. The RMSE of
a model prediction with respect to the estimated variable X4, is defined
as the square root of the mean squared error:

n 2
RMSE = i1 (Xobs,i - Xmoa’el,i)

n

where X, is observed values and X4 is modelled values at time/place i.
The calculated RMSE values will have units, and RMSE for phosphorus
concentrations can for this reason not be directly compared to RMSE
values for chlorophyll a concentrations etc. However, the RMSE values
can be used to distinguish model performance in a calibration period with
that of a validation period as well as to compare the individual model
performance to that of other predictive models.

Normalized root mean square error (NRMSE): Non-dimensional
forms of the RMSE are useful because often one wants to compare RMSE
with different units. There are two approaches: normalize the RMSE to
the range of the observed data, or normalize to the mean of the observed
data.

ISBN 978-93-84124-16-8 986

COMPARATIVE ANALYSIS OF MACHINE LEARNING TECHNIQUES

RMSE
X

NRMSE=

obs,max ~ “*obs,min
X obs

(the latter one is also called Cy,RMSE for the resemblance with calculating
the coefficient of variance).

Results and discussion: For each technique, the appropriate parameters,
as specified by the algorithm, are tweaked to get the most optimal results.
Table 2 illustrates the NRMSE values of different lags of data obtained
over different techniques. The parameters are tweaked until the least
NRMSE values computed using Eq. (2) could be obtained and the best
values are presented in Table 2. For a given lag, the test results obtained
from these individual techniques are presented to different ensembles.
The NRMSE values obtained from the ensembles for different lags are
presented in Table 3.

The parameters over which GRNN gave the best results over different lags
are summarized in Tables 4-7, respectively. Also, parameters over which
the non-linear ensemble trained with BPNN gave the best results are
presented in Table 8. These values are obtained by trial and error. In
selecting the constituents for the ensemble, the performance of the
individual techniques over all the lags (Tables 2 and 3) is considered and
accordingly the best five among the techniques - GRNN and DENFIS are
selected to become part of the ensemble. Interesting observations can be
drawn from Tables 2 and 3. First, there seems to be a correlation between
the lag numbers and the corresponding NRMSE value. We noticed that as
the lag increases the NRMSE value decreases. Second, for the individual
lags, GRNN seemed to outperform all the other techniques in the stand-
alone mode, although other techniques such as DENFIS performed
consistently well over all the lags.

Third, the ensembles yielded better results than any of the individual
techniques with some exceptions. For instance, for lagi, GRNN is found to
be better than the three linear ensembles and for lagz, GRNN
outperformed the linear ensembles. Finally, the non-linear ensemble built
using GRNN as the arbitrator, outperformed all the other constituent
techniques in the stand-alone mode and all linear ensembles over all the

IMRF Journals 987

Mathematical Sciences International Research Journal: Vol 3 Spl Issue (2014) ISSN 2349-1353

lags. Within the non-linear ensemble, the least NRMSE value is obtained
for lag1 and also the difference of the NRMSE values over all other lags is

very minimal.

Table 2 NRMSE values on test data for the selected 2 different
techniques in standalone mode

Lag1 Lag2 Lag3 Lag4 Lags
GRNN | 0.210247 | 0.211408 | 0.176769 | 0.179869 0.166883
DENFIS | 0.170907 | 0.267306 | 0.18425 | 0.189379 0.293461

Table 3 NRMSE values on Test data for the various ensembles

Lag1 Lag2 Lag3 Lag4 Lags
Linear ensemble based on | 58061 | 0.166962 | 0.147629 | 0.145939 | 0.143424
Linear ensemble based on | 0.170045 | 0.166926 | 0.147439 | 0.146003 | 0.143463
Linear ensemble based on | 0.170037 | 0.166901 | 0.147187 | 0.145898 | 0.143399
Non-linear ensemble based | 0.130723 | 0.136737 | 0.132911 |0.136644 | 0.136328
on BPNN
Table 4 Details of GRNN structure and parameters over different lags
Lagi Lag2 Lag3 Lagg4 | Lags
Number of input nodes 1 2 3 4 5
Number of hidden nodes 4 4 8 10 8
Learning rate 0.1 0.1 0.1 0.1 0.1
Momentum rate 0.1 0.2 0.2 0.016 0.11
Table 5:Details of TANN structure and values for diff.
Lag1 |Lagz|Lags3| Lag4 | Lags
Number of input 1 2 | 3 4 5
Number of hidden 4 7 7 7 7
Value of Pindex 29 |33 |25 | 27 27
Value of Epsilon 0.004 10.008(0.03 | 0.009 | 0.025

ISBN 978-93-84124-16-8

988

COMPARATIVE ANALYSIS OF MACHINE LEARNING TECHNIQUES

Table 6: Details of PSN structure and parameters for different
Lag: |Lag2| Lag3 |Lagq| Lags

Number of input nodes 1 2 3 4 5
Number of pattern nodes 80 | 79 78 77 76

Smoothing parameter 101 | 1.77 0.55 1.99| 246

Table 7:Details of GRNN Structure and parameters over

different lags
Lag1 Lag2 Lag3 Lagg Lags
Number of 1 2 3 4 5
input nodes
Number of 80 79 78 77 76

pattern nodes

Smoothing 1.01 1.77 0.55 1.99 2.46
parameter

Table 8 Details of BPNN structure and parameters over
different lags for the ensemble data
Lagi | Lag2 | Lag3 | Lag4 |Lags

Number of input
nodes 5 5 5 5 5

Number of hidden 1 1 1 2 5

Learning rate 0.08 | 0.02 | 0.01 | 0.09 | 0.1
Momentum rate | 0.44 | 0.36 | 0.39 | 922 |0.15

lag2, where some techniques are better, the linear ensembles of all kinds
showed better performance than the individual stand-alone techniques.
Non-Linear ensemble is better than any other technique or ensemble over
all kinds of data. Amongst the linear ensembles, the weighted mean and
weighted median based ensembles yielded similar NRMSE values for all
lags.

In this connection, we observe that ensembling is more time consuming
than using intelligent methods in their stand-alone mode. However, it is
believed that the gains accrued in the bargain in the form of improved
accuracy more than offset the time lost. Further, we point out that, when

IMRF Journals 989

Mathematical Sciences International Research Journal: Vol 3 Spl Issue (2014) ISSN 2349-1353

reliability prediction is to be made accurately in an offline manner, then
time is no constraint and non-linear ensemble should be preferred.
However,when time is a constraint, then, on-line methods like DENFIS
should be preferred, as they need only one-pass or one-iteration to give
predictions.

Further, we observe that Pai and Hong (2006) also used the same data set
to test the efficacy of their support vector machine simulated annealing
(SVMSA) method. However, since they did not use the lagged data in
their experimentation our results cannot be compared with theirs.
Further, they divided the data set of 101 observations into training (33
observations), validation (8 observations) and test (60 observations) sets.
Since it is a non-standard method of splitting the data set for
experimentation, we chose not to compare our results with theirs. The
NRMSE value obtained on the test set by their experiments was 0.1562,
which is not as good as the results of the proposed model.

Conclusion: In the paper, ensemble models are developed to forecast
software reliability efficiently. Three linear ensembles and one non-linear
ensemble are developed and tested to forecast software reliability. Various
statistical and intelligent techniques constitute the ensembles. They are
back propagation trained neural network (BPNN), dynamic evolving
neuro-fuzzy inference system (DENFIS). Based on the numerical
experiments conducted by us on the software reliability data obtained
from literature, we noticed that the non-linear ensemble outperformed all
the other ensembles and also the constituent statistical and intelligent
techniques. Further, we noticed that the linear ensembles also outper-
formed the constituent techniques from lag3 onwards. In conclusion, the
ensembles developed here can be used as viable alternatives to the
existing methods for software reliability prediction.

References:

1. M.L, 19091. A critical review on software reliability modeling. Reliability
Engineering and System Safety 32 (3), 357-371.

2. Dueck, G., Scheuer, T., 1990. Threshold accepting: a general-purpose
optimization algorithm appearing superior to simulated annealing.
Journal of Computational Physics 9o, 161-175.

3. Ho, S.L., Xie, M., Goh, T.N., 2003. A study of connectionist models for
software reliability prediction. Computers and Mathematics with

ISBN 978-93-84124-16-8 990

COMPARATIVE ANALYSIS OF MACHINE LEARNING TECHNIQUES

10.

11.

12.

13.

14.

15.

Applications 46 (7), 1037-1045.

Kanmani, S., Uthariaraj, V.R., Sankaranarayanan, V., Thambidurai, P.,
2007. Object-oriented software failure fault prediction using neural
networks. Information and Software Technology 49, 483-492.
Karunanithi, N., Whitley, D., Maliya, Y.K., 1992. Prediction of software
reliability using connectionist models. I[EEE Transactions on Software
Engineering 18, 563-574.

Kasabov, N.K., 2002. DENFIS: dynamic evolving neural-fuzzy inference
system and its application for time-series prediction. IEEE Transac-
tions on fuzzy systems 10 (2).

Madsen, H., Thyregod, P., Burtschy, B., Albeanu, G., Popentiu, F., 2006.
On using soft computing techniques in software reliability engineering.
International Journal of Reliability, Quality and Safety Engineering 13
(1), 61-72.

. Makridakis, S., Anderson, A., Carbone, R., Fildes, R., Hibdon, M.,

Lewandowski, R., Newton, J., Parzen, E., Winkler, R., 1982. The
accuracy of extrapolation (time series) methods: results of a forecasting
competition. Journal of Forecasting 1, 111-153.

. Musa, J.D., 1979. Software reliability data. IEEE Computer Society -

Repository.

Olmeda, 1., Fernandez, E., 1997. Hybrid classifiers for financial
multicriteria decision making: the case of bankruptcy prediction.
Computational Economics 10, 317-335.

Perrone, M.P., Cooper, L.N., 1993. When networks disagree: ensemble
methods for hybrid neural netwoks. In: Mammone, R.J. (Ed.), Neural
Networks for speech and Image processing. Chapman Hall, pp. 126142.
Ravi, V., Zimmermann, H.J., 2001. A neural network and fuzzy rule
base hybrid for pattern classification. Soft Computing 5 (2), 152-159.
Ravi, V., Zimmermann, H.J., 2003. Optimization of neural networks via
threshold accepting: a comparison with backpropagation algorithm. In:
Conference on Neuro-Computing and Evolving Intelligence, Auckland,
New Zealand.

Ravi, V., Murty, B.S.N., Dutt, N.V.K,, 2005. Forecasting the properties
of carboxylic acids by a threshold accepting-trained neural network.
Indian Chemical Engineer 47 (3), 147-151.

Reformat, M., 2005. A fuzzy-based multimodel system for reasoning
about the number of software defects. International Journal of
Intelligent Systems 20 (11), 1093-1115.

IMRF Journals 991

Mathematical Sciences International Research Journal: Vol 3 Spl Issue (2014) ISSN 2349-1353

16. Shin, Y., Ghosh, J., 1991. The Pi-Sigma networks: an efficient higher-
order neural network for pattern classification and function approx-
imation. In: Proceedings of International Joint Conference on Neural
Networks, 1, Seattle, Washington, pp. 13-18.

17. Sitte, R., 1999. Comparison of software-reliability-growth predictions:
neural networks vs parametric-recalibration. IEEE Transactions on
Reliability 48 (3), 285-2091.

18. Specht, D.F., 1991. A general regression neural network. IEEE Transac-
tions on Neural Networks 2 (6), 568-576.

19.Su, Y.-S., Huang, C.-Y., 2006. Neural-network-based approaches for
software reliability estimation using dynamic weighted combinational
models. Journal of Systems and Software 8o (4), 606-615.

20.Tian, L., Noore, A., 2005a. On-line prediction of software reliability
using an evolutionary connectionist model. The Journal of Systems and
Software 77, 173-180.

21. Tian, L., Noore, A., 2005b. Evolutionary neural network modeling for
software cumulative failure time prediction. Reliability Engineering
and System Safety 87, 45-51.

22.Xu, K., Xie, M., Tang, L.C., Ho, S.L., 2003. Application of neural
networks in forecasting engine systems reliability. Applied Soft
Computing 2, 255-268.

23.Yu, L., Wang, S.Y., Lai, K.K,, 2005. A novel non-linear ensemble
forecasting model incorporating GLAR and ANN for foreign exchange
rates. Computers and Operations Research 32 (10), 25232541.

24.Zhou, Z-H., Wu,], Tang, W., 2002. Ensembling neural networks: many
could be better than all. Artificial Intelligence 137, 239-263.

*hk

Bonthu Kotaiah /Research Scholar, Babasaheb Bhimrao Ambedkar
University, Lucknow, India

T. Arundhathi /Assistant Professor, Maulana Azad National Urdu

University, Hyderabad, India
Pathan Mehra Jahan/Assistant Professor, Maulana Azad National Urdu
University, Hyderabad, India
kotaiah_bonthuklce@yahoo.com, arundathi.tunga2i@gmail.com,

pathan mehra@yahoo.com

ISBN 978-93-84124-16-8 992

