IDEAL CONGRUENCES FASCINATING ON PRE A* - ALGEBRA

U.Surya Kumar¹, J.Venkateswara Rao², V.Ramabrahmam³, A.Satyanarayana⁴

AMS subject classification (2000):06E05, 06E25,06E99,06B10

Abstract: In this paper we introduce congruences corresponding to ideals of Pre A*-algebra A. We also prove that let I be an ideal a Pre A*-algebra A then β_1 is the smallest congruence on A containing $I \times I$ and proved several results on these ideal congruences. It is proved that $\Box(A)$ be the lattice of all ideals of Pre A*-algebra A then $I \to \beta_1$ is homomorphism of the lattice $\Box(A)$ into the lattice Con(A) of all congruences on A. Also we characterize the factor congruences on a Pre A*-algebra A.

Keywords: Pre A*-algebra, ideal, congruence, ideal congruence, factor congruence.

1. INTRODUCTION

In 2000, J. Venkateswara Rao [5] introduced the concept of Pre A*-algebra $(A, \land, \lor, (-\tilde{)})$ as the variety generated by the 3-element algebra $A=\{0,1,2\}$ which is an algebraic form of three valued conditional logic.In [7], Satyanarayana et.al. generated Semilattice structure on Pre A*-Algebras .In [6], Venkateswara Rao.J and Srinivasa Rao.K defined a partial ordering on a Pre A*-algebra A and the properties of A as a poset are studied. In [8], Satyanarayana.A, et.al. derive necessary and sufficient conditions for pre A*-algebra A to become a Boolean algebra in terms of the partial ordering.

In this paper we discuss various properties of congruences on a Pre A*-algebra. In particular, we introduce the notion of an ideal congruences corresponding to a given ideal and prove several results on these. It is proven that if $\Box(A)$ be the lattice of all ideals of Pre A*-algebra A then $I \to \beta_I$ is homomorphism of the lattice $\Box(A)$ into the lattice Con(A) of all congruences on A.

1. Preliminaries:

- **1.1. Definition:** An algebra $(A, \land, \lor, (-)^{\sim})$ where A is a non-empty set with $1, \land, \lor$ are binary operations and $(-)^{\sim}$ is a unary operation satisfying
- (a) $\tilde{x} = x \quad \forall x \in A$
- (b) $x \land x = x$, $\forall x \in A$
- (c) $x \wedge y = y \wedge x$, $\forall x, y \in A$
- (d) $(x \wedge y)^{\sim} = x^{\sim} \vee y^{\sim} \quad \forall x, y \in A$

(e)
$$x \land (y \land z) = (x \land y) \land z$$
, $\forall x, y, z \in A$

(f)
$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z), \quad \forall x, y, z \in A$$

(g)
$$x \wedge y = x \wedge (x \vee y)$$
, $\forall x, y \in A$ is called a Pre A*-algebra.

1.2. Example: $3 = \{0, 1, 2\}$ with operations $\land, \lor, (-)$ defined below is a Pre A*-algebra.

^	0	1	2	V	0	1	2	х	<i>x</i> ~
0	0	0	2	0	0	1	2	0	1
1	0	1	2	1	1	1	2	1	0
2	2	2	2	2	2	2	2	2	2

1.3. Note: The elements 0, 1, 2 in the above example satisfy the following laws:

(a)
$$2^{\sim} = 2$$

(b)
$$1 \land x = x$$
 for all $x \in 3$

(c)
$$0 \lor x = x$$
 for all $x \in 3$

(d)
$$2 \wedge x = 2 \vee x = 2$$
 for all $x \in 3$.

1.4. Example: $2 = \{0, 1\}$ with operations \land , \lor , $(-)^{\sim}$ defined below is a Pre A*-algebra.

^	0	1	V	0	1	X	x~
0	0	0	0	0	1	0	1
1	0	1	1	1	1	1	0

1.5 Note: (i) $(2, \vee, \wedge, (-\tilde{)})$ is a Boolean algebra. So every Boolean algebra is a Pre A*- algebra.

(ii) The identities 1.1(a) and 1.1(d) imply that the varieties of Pre A*-algebras satisfies all the dual statements of 1.1(b) to 1.1(g).

1.6. Definition: Let A be a Pre A*-algebra. An element $x \in A$ is called a central element of A if $x \vee \tilde{x} = 1$ and the set $\{x \in A \mid x \vee \tilde{x} = 1\}$ of all central elements of A is called the centre of A and it is denoted by B (A). Note that if A is a Pre A*-algebra with 1 then 1, $0 \in B$ (A). If the centre of a Pre A*-algebra coincides with $\{0, 1\}$ then we say that A has trivial centre.

- 1.7. Theorem:[6] Let A be a Pre A*-algebra with 1, then B(A) is a Boolean algebra with the induced operations \land , \lor , (-)~
- **1.8.Lemma:** Let A be a Pre A*-algebra and $x, y \in A$. Then $x \wedge y \wedge y^{\sim} = y \wedge y^{\sim}$ $x \wedge x^{\sim}$.

Proof:
$$x \wedge y \wedge y = y \vee x \wedge y$$

$$= y \wedge \{x \wedge (x \vee y)\} \quad (\text{By 1.1(g)})$$

$$= y \wedge \{(x \vee y) \wedge x\}$$

$$= \{y \wedge (x \vee y) \wedge x$$

$$= (y \wedge x) \wedge x$$

$$= y \wedge x \wedge x$$

2. CONGRUENCES ON PRE A*-ALGEBRA

- **2.1. Definition:** Let A be a Pre A*-algebra and θ be binary relation on A. Then θ is said to be an equivalence relation on A if θ satisfies the following:
- (i) Reflexive: $(x, x) \in \theta$, for all $x \in A$
- (ii)Symmetric: $(x, y) \in \theta \Rightarrow (y, x) \in \theta$, for all $x, y \in A$
- (iii)Transitive: $(x, y) \in \theta$ and $(y, z) \in \theta \Rightarrow (x, z) \in \theta$, for all $x, y, z \in A$.

We write $x \theta y$ to indicate $(x, y) \in \theta$

- **2.2. Definition:** A relation θ on a Pre A*- algebra $(A, \land, \lor, (-)^{\sim})$ is called a congruence relation if
- (i) θ is an equivalence relation
- (ii) θ is closed under $\wedge, \vee, (-)^{\sim}$.
- **2.3. Lemma:** [9] Let $(A, \land, \lor, (-)^{\sim})$ be a Pre A*-algebra and let $a \in A$ then the relation $\theta_a = \{(x, y) \in A \times A / a \land x = a \land y\}$ is (a) a congruence relation

(b)
$$\theta_a \cap \theta_{a^{\sim}} = \theta_{a \vee a^{\sim}}$$
 (c) $\theta_a \cap \theta_b \subseteq \theta_{a \vee b}$

(c)
$$\theta_a \cap \theta_b \subseteq \theta_{a \vee 1}$$

(d)
$$\theta_a \cap \theta_{a^{\sim}} \subseteq \theta_{a \wedge a^{\sim}}$$
 (e) $\theta_a \wedge \theta_b = \theta_{a \wedge b}$

(e)
$$\theta_{-} \wedge \theta_{-} = \theta_{-}$$

(f)
$$\theta_a \vee \theta_b = \theta_{a \vee b}$$
 (g) $(\theta_a)^{\sim} = \theta_{a^{\sim}}$

$$(g) (\theta_a)^{\sim} = \theta_{a^{\sim}}$$

We will write $x \theta_a y$ to indicate $(x, y) \in \theta_a$.

- **2.4. Lemma:** [9] Let $(A, \land, \lor, (-))$ be a Pre A*-algebra and let $a \in A$ then the relation $\beta_a = \{(x, y) \in A \times A \mid a \vee x = a \vee y\}$ is (a) a congruence relation
 - (b) $\beta_a \cap \beta_a \sim \subseteq \beta_{a \vee a} \sim$ (c) $\beta_a \cap \beta_a \sim = \beta_{a \wedge a} \sim$
 - (d) $\beta_a \cap \beta_b \subseteq \beta_{a \wedge b}$ (e) $\beta_a \wedge \beta_b = \beta_{a \wedge b}$ (f) $\beta_a \vee \beta_b = \beta_{a \vee b}$ (g) $(\beta_a)^{\sim} = \beta_a^{\sim}$

(e)
$$\beta_a \wedge \beta_b = \beta_{a \wedge b}$$

(g)
$$(\beta_{\alpha})^{\sim} = \beta_{\alpha}$$

We will write $x \beta_a y$ to indicate $(x, y) \in \beta_a$.

- **2.5. Definition:** Let A be a Pre A*-algebra .Then the set of all congruences on A is denoted by Con(A). If A is Pre A*-algebra then the congruences A× A and $\{(x, x) \mid x \in A\}$ are denoted by ∇_A and Δ_A respectively.
- **2.6. Definition:** Let A be a Pre A*-algebra and α , β be binary relations on A. Then we define α o $\beta = \{(x, y) \in A \times A \mid (x, z) \in \beta \text{ and } (z, y) \in \alpha \text{ for some } z \in A\}$.

If α , β are equivalence relations then α o β need not be an equivalence relation. However if α o $\beta = \beta$ o α then it is known that α o β is an equivalence relation.

- **2.7. Definition:** Let A be a Pre A*-algebra and α , $\beta \in \text{Con}(A)$. Then α , β are said to be permutable if α o $\beta = \beta$ o α . A subset L of Con(A) is called permutable if any two congruences in L are permutable.
- **2.8. Lemma:** For any element a of Pre A*-algebra we define $\theta = \{(x, y) \in A \times A \mid a \wedge x = a \wedge y\}$ then $\theta_a = \beta_a^- = \{(x, y) \in A \times A \mid a \wedge x = a \wedge y\}$ then $\theta_a = \beta_a^- = \{(x, y) \in A \times A \mid a \wedge x = a \wedge y\}$.

Proof: Let $a, x, y \in A$.

Let
$$(x, y) \in \theta_a \Rightarrow a \land x = a \land y$$

 $\Rightarrow a \lor (a \land x) = a \lor (a \land y)$
 $\Rightarrow a \lor x = a \lor y \text{ (from 1.1 Definition (g))}$
 $\Rightarrow (x, y) \in \beta_a \checkmark$

Therefore $\theta_a \subseteq \beta_a$

Let
$$(x, y) \in \beta_{a} \Rightarrow a \lor x = a \lor y$$

 $\Rightarrow a \land (a \lor x) = a \land (a \lor y)$
 $\Rightarrow a \land x = a \land y \text{ (from 1.1 Definition (g))}$
 $\Rightarrow (x, y) \in \theta_a$

Therefore $\beta_{a} \subseteq \theta_{a}$

Hence $\theta_a = \beta_a$

3. IDEAL CONGRUENCES ON PRE A*-ALGEBRA

Now we introduce the notion of the ideal congruence on a Pre A*-algebra A corresponding to an ideal I of A.

3.1. Definition: A nonempty subset I of a Pre A*-algebra A is said to be an ideal of A if the following hold

- (i) $a, b \in I \Rightarrow a \lor b \in I$
- (ii) $a \in I \implies x \land a \in I \text{ for each } x \in A$
- **3.2.Definition:** For any ideal I of a Pre A*-algebra A we define $\beta_I = \{(x, y) / a \lor x = a \lor y \text{ for some } a \in I\}$. That is $\beta_I = \bigcup_{a \in I} \beta_a = \bigcup_{a \in I} \theta_a$
- **3.3. Theorem:** β_I is a congruence on a Pre A*-algebra A for any ideal I of A.

Proof: We know that the union of a class of congruences on A is again a congruence on A if the given class is directed above, in the sense that, for any two members β_1 and β_2 in that class there exist a member β in the class containing both β_1 and β_2 .

Now consider $C = \{ \beta_a / a \in I \}$

Since each β_a is congruence on A, C is a class of congruence on A. Also for any a, $b \in I$ we have $a \lor b \in I$ and $\beta_a \lor \beta_b = \beta_{a \lor b} \in C$

Therefore C is a directed above class of congruences and $\bigcup_{a\in I}\beta_a$ $(=\beta_I)$ is a congruence on A.

- **3.4. Remark:** If $\langle x \rangle = \{a \land x/a \in A\}$ is the principal ideal generated by an element x in a Pre A*-algebra A, then clearly $\beta_x \subseteq \beta_{\langle x \rangle}$. However equality does not hold as in the case of distributive lattices. For, consider the three element Pre A*-algebra $A = \{0,1,2\}, \langle 0 \rangle = \{0,2\}$ and $\beta_0 = \Delta_A$ and $\beta_{\langle 0 \rangle} = A \times A$. Hence $\beta_{\langle 0 \rangle} \not\subseteq \beta_0$.
- **3.5. Theorem:** Let I be an ideal a Pre A*-algebra A. Then β_I is the smallest congruence on A containing I \times I.

Proof: We know that β_I is a congruence on a Pre A*-algebra A.

Also for any $x, y \in I$ we have $x \lor y \in I$

Now
$$(x \lor y) \lor x = x \lor y = (x \lor y) \lor y$$
 hence $(x, y) \in \beta_I$ (since $x \lor y \in I$)

Therefore $I \times I \subseteq \beta_I$

Now β is any congruence on A such that $I \times I \subseteq \beta$.

Then $(x, y) \in \beta_I \Rightarrow a \lor x = a \lor y \text{ for some } a \in I$

We have $(x \wedge x^{\tilde{}}, a) \in \beta$ (since $x \wedge x^{\tilde{}} \in I_0 \subseteq I$ and $a \in I$)

- \Rightarrow ((x \wedge x^{\infty}) \vee x, a \vee x) \in \beta\$ (since \beta\$ is a congruence)
- \Rightarrow $(x, a \lor x) \in \beta$ and for similar reason $(y, a \lor y) \in \beta$
- \Rightarrow $(x, y) \in \beta$ (since β is transitive and $a \lor x = a \lor y$)

Therefore $\beta_I \subseteq \beta$.

Then β_I is the smallest congruence on A containing I×I.

3.6. Theorem: For any ideals I and J of a Pre A*-algebra A the following hold.

$$(1) \mathbf{I} \subseteq \mathbf{J} \Rightarrow \beta_I \subseteq \beta_I$$

(2)
$$\beta_I \cap \beta_J = \beta_{I \cap I}$$

(3)
$$\beta_I \vee \beta_J = \beta_{I \vee I}$$

Proof: Let I and J are ideals of a Pre A*-algebra A.

(1) Suppose that $I \subseteq J$.

Let $a \in I \implies a \in J$

Let
$$(x, y) \in \beta_I \Rightarrow a \lor x=a \lor y \text{ for some } a \in I$$

$$\Rightarrow a \lor x=a \lor y \text{ for some } a \in J$$

$$\Rightarrow (x, y) \in \beta_I$$

Therefore $\beta_I \subseteq \beta_I$.

(2) Since I \cap J \subseteq I and I \cap J \subseteq J we get $\beta_{I \cap J} \subseteq \beta_{I} \cap \beta_{J}$

Let
$$(x, y) \in \beta_I \cap \beta_J \Rightarrow (x, y) \in \beta_I$$
 and $(x, y) \in \beta_J$

$$\Rightarrow$$
 a \vee x=a \vee y and b \vee x=b \vee y, where a \in I, b \in J

Now $a \land b \in I \cap J$ and also $(a \land b) \lor x = (a \lor x) \land (b \lor x)$

$$= (a \lor y) \land (b \lor y)$$
$$= (a \land b) \lor y$$

Therefore $(x, y) \in \beta_{I \cap I}$

Hence
$$\beta_I \cap \beta_J \subseteq \beta_{I \cap I}$$

Therefore
$$\beta_I \cap \beta_J = \beta_{I \cap I}$$

(3) Since $I \subseteq I \vee J$ and $J \subseteq I \vee J$ we have $\beta_I \subseteq \beta_{I \vee J}$, $\beta_J \subseteq \beta_{I \vee J}$ and hence $\beta_I \vee \beta_J \subseteq \beta_{I \vee J}$

Let $(x, y) \in \beta_z$ where $z \in I \vee J$

$$\Rightarrow z = \bigvee_{i=1}^{n} x_i \text{ for some } x_i \in I \lor J \text{ and } (x, y) \in \beta_{x_i} \qquad = \bigvee_{i=1}^{n} \beta x_i$$

(since $\beta_{a \lor b} = \beta_a \lor \beta_b$)

$$\Rightarrow (x, y) \in \bigvee_{i=1}^{n} \beta x_{i} \subseteq \beta_{I} \vee \beta_{J} \text{ (since each } x_{i} \in I \text{ or } J \text{)}$$

$$\Rightarrow$$
 $(x, y) \in \beta_I \vee \beta_J$

$$\Rightarrow \beta_{I \vee J} \subseteq \beta_I \vee \beta_J$$

Therefore $\beta_I \vee \beta_J = \beta_{I \vee J}$.

Let us recall that the set Con(A) of all congruences on any algebra A is an algebraic lattice under the inclusion ordering in which the g.l.b and l.u.b of any subset Č of Con(A) are given by g.l.b $\check{C} = \bigoplus_{\theta \in \check{C}}$ and l.u.b $\check{C} = \bigcup \{ \theta_1 o \theta_2 o \dots o \theta_n / \theta_i \in \check{C} \}$

- }. Also from [10] it is known that the set $\Box(A)$ of all ideals of a Pre A*-algebra A forms an algebraic lattice under the inclusion of ordering. Now we have the following.
- **3.7. Theorem:** Let $\Box(A)$ be the lattice of all ideals of Pre A*-algebra A. Then $I \to \beta_I$ is homomorphism of the lattice $\Box(A)$ into the lattice Con(A) of all congruences on A.

Proof: From 3.5 Theorem it follows that $I \to \beta_I$ is lattice homomorphism of $\square(A)$ into the lattice Con(A).

The above map $I \to \beta_I$ need not be an injection, in general. However, we have the following.

3.8. Theorem: For any Pre A*-algebra A, the map $I \to \beta_I$ of $\Box(A)$ into Con(A) is an injective if A is a Boolean algebra.

Proof: Suppose that A is a Boolean algebra and I, J are ideals of A such that $\beta_I = \beta_I$.

Then for any
$$a \in I$$
 and $b \in J$, we have $a \lor (a \lor b) = a \lor b$
 $\Rightarrow (a \lor b, b) \in \beta_a \subseteq \beta_I = \beta_J$

and hence $x \lor (a \lor b) = x \lor b$, for some $x \in J$ which implies that

```
a = a \land (x \lor (a \lor b)) (since A is a Boolean algebra)
= a \land (x \lor b)
\in J (Since x \lor b \in J, J is an ideal)
```

Therefore $I \subseteq J$ and similarly $J \subseteq I$ and hence I = JThus $I \rightarrow \beta_I$ is an injective.

3.9. Definition: Let A be a Pre A*-algebra and $\alpha \in \text{Con}(A)$. Then α is called a factor congruence if there exist $\beta \in \text{Con}(A)$ such that $\alpha \cap \beta = \Delta_A$ and α o

 $\beta = A \times A$. In this case β is called direct complement of α .

3.10. Note: In the following theorem we consider Pre A*-algebra A induced by a Boolean algebra.

3.11. Theorem: Let A be a Pre A*-algebra with 1, θ is a factor congruence on A and β a direct complement of θ . Then there exist unique $a \in A$ such that $\theta = \theta_a$ and $\beta = \theta_{a^-} (= \beta_a)$.

Proof: Let 1 = 0. Then 1 and 0 are identities for operators \land and \lor respectively in A.

We have $\theta \cap \beta = \Delta_A$ and $\theta \circ \beta = A \times A$.

Then clearly θ o $\beta = \beta$ o $\theta = A \times A$.

Since $(0,1) \in A \times A = \theta$ o β , there exist $a \in A$ such that $(0,a) \in \beta$ and $(a,1) \in \theta$.

First we observe that a is a unique element with the above property. If $b \in A$ also is such that $(0, b) \in \beta$ and $(b, 1) \in \theta$ then by the transitive and symmetry of β and θ we get that $(a, b) \in \theta \cap \beta = \Delta_A$, the diagonal of A and hence a = b

Thus a is unique such that $(0, a) \in \beta$ and $(a,1) \in \theta$

Now we prove that $\theta = \theta_a$ and $\beta = \theta_{a^-}$

For any $x, y \in A$ we have

 $(0, a \land x) = (0 \land x, a \land x) \in \beta$ (since $(0, a) \in \beta$) and hence $(a \land x, a \land y) \in \beta$

Now
$$(x, y) \in \theta \Rightarrow (a \land x, a \land y) \in \theta \cap \beta = \Delta_A$$

 $\Rightarrow a \land x = a \land y$
 $\Rightarrow (x, y) \in \theta_a$

Therefore $\theta \subseteq \theta_a$.

On the other hand for any $x \in A$, $(a \land x, x) = (a \land x, 1 \land x) \in \theta$ (since $(a, 1) \in \theta$)

Now $(x, y) \in \theta_a \Rightarrow a \land x = a \land y$

We have $(a \land x, x) \in \theta$, $(a \land y, y) \in \theta$ and $a \land x = a \land y \Rightarrow (x, y) \in \theta$

Therefore $\theta_a \subseteq \theta$.

Thus $\theta = \theta_a$.

Also from $(0, a) \in \beta$ and $(a,1) \in \theta$ we have that $(0, \tilde{a}) \in \theta$ and $(\tilde{a},1) \in \beta$ and by interchanging θ and β in the above argument we get that

$$\beta = \theta_{a} = \beta_a = \{(x, y) \in A \times A \mid a \lor x = a \lor y\}$$

we have already proved that a is unique with this property.

4. ACKNOWLEDGMENT

The authors thank the Referee for his valuable comments and suggestions for the improvement of the paper.

ISSN: 2278-8697

5. REFERENCES

- Fernando Guzman and Craig C. Squir: The Algebra of Conditional logic, Algebra Universalis 27(1990), 88-110
- Koteswara Rao.P., A*-algebra and If-Then-Else structures(thesis) 1994, Nagarjuna University, A.P., India
- Manes E.G. The Equational Theory of Disjoint Alternatives, personal communication to Prof. N.V.Subrahmanyam(1989)
- Manes E.G. Ada and the Equational Theory of If-Then-Else, Algebra Universalis30(1993), 373-394
- 5. Venkateswara Rao.J. On A*- algebras(thesis) 2000, Nagarjuna University , A.P., India
- 6. Venkateswara Rao.J and Srinivasa Rao.K., Pre A*-algebra as a Poset,African Journal of Mathematics and Computer Science Research Vol.2 pp 073-080, May 2009
- 7. Venkateswara Rao.J, Satyanarayana.A, "Semilattice structure on Pre A*- Algebras", Asian Journal of Scientific Research, Vol.3 (4), 2010 (pp 249-257).
- 8. Satyanarayana.A, Venkateswara Rao.J, Srinivasa Rao.K, Surya Kumar.U, "Some structural compatibilities of Pre A*-Algebra", African Journal of Mathematics and Computer Science Research.Vol.3 (4), April 2010 (pp 54-59).
- 9. Srinivasa Rao.K., Structural compatibility of Pre A*-algebra with Boolean algebra: A Novel Approach (thesis) 2009, Nagarjuna University, A.P., India
- Stanley Burris and Sankappanavar.H.P.: A Course in Universal Algebra ,The Millennium edition.

¹Author 1 U.Surya kumar, Senior Lecturer in Mathematics, Akkineni Nageswara Rao College Gudiwada-521301, Andra Pradesh, India; uskmat1963@yahoo.in
²Author 2: Dr. J. Venkateswara Rao Professor, Mekelle University, Mekelle, Ethiopia, venkatjonnalagadda@yahoo.co.in

³Author 3: V. Ramabrahmam Senior Lecturer in Mathematics,Sir CRR College Eluru-534007, Andra Pradesh, India; rbveduruvada@gmail.com

⁴Author 4: A. Satyanarayana, Senior Lecturer in Mathematics, Akkineni Nageswara Rao College Gudiwada-521301, Andra Pradesh, India; asnmat1969@yahoo.in