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Abstract:  In this paper we introduce congruences corresponding to ideals of Pre A*-

algebra A. We also prove that let I be an ideal a Pre A*-algebra A then 
I

β   is the smallest 

congruence on A containing I × I and proved several results on these ideal congruences. It 

is proved that �(A) be the lattice of all ideals of Pre A*-algebra A then  I →
I

β  is 

homomorphism of the lattice �(A) into the lattice Con(A) of all congruences on A. Also we 

characterize the factor congruences on a Pre A*-algebra A. 
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1. INTRODUCTION 

In 2000, J. Venkateswara Rao [5] introduced the concept of Pre A*-algebra 

( , , , ( ))A ∧ ∨ −�  as the variety generated by the 3-element algebra A={0,1,2} which is 

an algebraic form of three valued conditional logic.In [7], Satyanarayana  et.al. 

generated Semilattice structure on Pre A*-Algebras .In [6], Venkateswara Rao.J and 

Srinivasa Rao.K defined a partial ordering on a Pre A*-algebra A and the properties 

of A as a poset are studied. In [8], Satyanarayana.A, et.al. derive necessary and 

sufficient conditions for pre A*-algebra A to become a Boolean algebra in terms of 

the partial ordering.  

In this paper we discuss various properties of congruences on a Pre A*-algebra. In 

particular, we introduce the notion of an ideal congruences corresponding to a given 

ideal and prove several results on these. It is proven that if �(A) be the lattice of all 

ideals of Pre A*-algebra A then  I →
I

β is homomorphism of the lattice �(A) into 

the lattice Con(A) of all congruences on A. 

1. Preliminaries: 

1.1. Definition: An algebra ( , , ,A ∧ ∨ (-)
~
) where A is a non-empty set with 1, ∧ , ∨  

are binary operations and ~( ) −  is a unary operation satisfying  

(a) ~ ~ =        x x x A∀ ∈  

(b) ,      x x x x A∧ = ∀ ∈  

(c) ,      ,x y y x x y A∧ = ∧ ∀ ∈   

(d) 
~  ~ ~( )       ,x y x y x y A∧ = ∨ ∀ ∈       
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(e) ( ) ( ) ,     , ,x y z x y z x y z A∧ ∧ = ∧ ∧ ∀ ∈   

(f) ( ) ( ) ( ),     , ,x y z x y x z x y z A∧ ∨ = ∧ ∨ ∧ ∀ ∈    

(g) 
~(  ),     ,x y x x y x y A∧ = ∧ ∨ ∀ ∈  is called a Pre A*-algebra. 

1.2. Example: 3 = {0, 1, 2} with operations , ,∧ ∨ (-)
~
defined below is a Pre A*-

algebra. 

 

1.3. Note: The elements 0, 1, 2 in the above example satisfy the following laws: 

(a) 2
~
 = 2                (b) 1 ∧ x = x for all x ∈ 3               

(c) 0 ∨ x = x for all x ∈ 3    (d) 2 ∧ x = 2 ∨ x = 2 for all x ∈ 3. 

1.4. Example: 2 = {0, 1} with operations  ∧, ∨, (-)
~
 defined below is a Pre A*-

algebra. 

∧ 0 1  ∨ 0 1  x x
~
 

0 0 0  0 0 1  0 1 

1 0 1  1 1 1  1 0 

 

1.5 Note: (i) ( )2, , , ( )∨ ∧ −�  is a Boolean algebra. So every Boolean algebra is a Pre 

A*- algebra. 

(ii)  The identities 1.1(a) and 1.1(d) imply that the varieties of Pre A*-algebras 

satisfies all the dual statements of 1.1(b) to 1.1(g). 

1.6. Definition:  Let A be a Pre A*-algebra. An element x  ∈A is called a central 

element of A if   =1x x∨ �  and the set { x ∈A /  =1x x∨ � } of all central elements of A 

is called the centre of A and it is denoted by B (A). Note that if A is a Pre A*-

algebra with 1 then 1, 0∈B (A). If the centre of a Pre A*-algebra coincides with {0, 

1} then we say that A has trivial centre. 

∧ 0 1 2  ∨ 0 1 2  x  x
~ 

0 0 0 2  0 0 1 2  0 1 

1 0 1 2  1 1 1 2  1 0 

2 2 2 2  2 2 2 2  2 2 
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1.7. Theorem:[6]  Let A be a Pre A*-algebra with 1, then B(A) is a Boolean 

algebra with  the induced operations  ,  , (-) ∧ ∨ �  

1.8.Lemma: Let A be a Pre A*-algebra and x , y ∈ A . Then x ∧ y ∧  y
~
 = y ∧

x ∧ x
~
. 

Proof:  x ∧ y ∧  y
~
 = y v x ∧  y

~
  

                              = y ∧ { x ∧  ( x
~

∨  y
~
)}    (By 1.1(g)) 

                              = y ∧ { ( x
~

∨ y
~
) ∧ x } 

                              ={ y ∧  ( x
~

∨ y
~
)} ∧ x  

                              =( y ∧ x
~
) ∧ x  

                              = y ∧ x ∧  x
~
 

2. CONGRUENCES ON  PRE A*-ALGEBRA 

2.1. Definition:  Let A be a Pre A*-algebra and θ  be binary relation on A. Then θ  

is said to be an equivalence relation on A if θ  satisfies the following: 

(i) Reflexive: ( x , x )∈ θ  ,for all x ∈A 

(ii)Symmetric: ( x , y )∈ θ �  ( y , x )∈ θ ,for all x , y ∈A 

(iii)Transitive: ( x , y )∈ θ  and ( y , z )∈ θ � ( x , z )∈ θ ,for all x , y , z ∈A . 

We write  yxθ  to indicate ( , )x y θ∈  

2.2. Definition: A relation θ  on a Pre A*- algebra ( , , , ( ) )A ∧ ∨ − �   is called a 

congruence relation if  

 (i) θ   is an equivalence relation 

 (ii) θ  is closed under , , ( ) ∧ ∨ − �  
. 

2.3. Lemma: [9] Let ( , , , ( ) )A ∧ ∨ − �  be a Pre A*-algebra and let Aa ∈ then the 

relation {( , ) /  }a x y A A a x a yθ = ∈ × ∧ = ∧  is    (a) a congruence  relation  

       (b)   a a a aθ θ θ ∨∩ =� �         (c) 
ba b a

θ θ θ ∨∩ ⊆   

       (d) 
  a a a a

θ θ θ ∧∩ ⊆� �          (e)
a b a b

θ θ θ ∧∧ =  

       (f) 
baba ∨=∨ θθθ          (g)  ( ) a aθ θ= ��  

We will write   y
a

x θ  to indicate ( , )
a

x y θ∈ . 

2.4. Lemma: [9] Let ( , , , ( ) )A ∧ ∨ − �  be a Pre A*-algebra and let Aa ∈  then the 

relation {( , ) /  }a x y A A a x a yβ = ∈ × ∨ = ∨  is    (a) a congruence relation  

       (b)   a a a aβ β β∩ ⊆ ∨� �    (c)   a a a aβ β β∩ = ∧� �  

       (d) 
ba b a

β β β ∧∩ ⊆           (e)
a b a b

β β β ∧∧ =   

       (f) 
a b a b

β β β ∨∨ =             (g) ( ) a aβ β=� �  
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We will write   
a

x yβ  to indicate ( , )
a

x y β∈ . 

2.5. Definition: Let A  be a Pre A*-algebra .Then the set of all congruences on A 

is denoted by Con(A). If A  is Pre A*-algebra then the congruences A× A and {( x ,

x ) / x ∈A} are denoted by 
A

∇  and 
A

∆ respectively. 

2.6. Definition: Let A  be a Pre A*-algebra and α , β be binary relations on A. 

Then we define α ο β ={( x , y )∈A× A / ( x , z )∈ β  and ( z , y )∈ α  for some z ∈

A}. 

If α , β  are equivalence relations then α ο β  need not be an equivalence relation. 

However if  α ο β = β ο α  then it is known that α ο β  is an equivalence relation.  

2.7. Definition: Let A  be a Pre A*-algebra and α , β  ∈Con(A). Thenα , β  are 

said to be permutable if α ο β = β ο α . A subset L of Con(A) is called permutable 

if any two congruences in L are permutable. 

2.8. Lemma: For any element a  of Pre A*-algebra we define 

{( , ) /  }
a

x y A A a x a yθ = ∈ × ∧ = ∧  then 
a

θ = a β �  ={( x , y )∈A×A / a 
~ ∨ x = a 

~ ∨
y }. 

Proof: Let a , x , y ∈A. 

Let ( x , y )∈ a
θ � a ∧ x =a ∧ y  

                        �  a 
~ ∨  (a ∧ x )= a 

~ ∨  (a ∧ y ) 

                        � a
~ ∨  x = a 

~ ∨ y  (from 1.1 Definition (g)) 

                        �  ( x , y )∈ a β �  

Therefore 
a

θ ⊆ a β �  

Let ( x , y )∈ a β � � a 
~ ∨  x = a 

~ ∨  y   

                           �   a ∧   (a 
~ ∨ x )= a ∧  (a 

~ ∨  y ) 

                           �  a ∧ x =a ∧ y   (from 1.1 Definition (g)) 

                           �  ( x , y )∈ a
θ  

Therefore a β � ⊆ a
θ  

Hence 
a

θ = a β �  

3. IDEAL  CONGRUENCES ON  PRE A*-ALGEBRA 

Now we introduce the notion of the ideal congruence on a  Pre A*-algebra A  

corresponding to an ideal I of A.   

3.1. Definition: A nonempty subset I of a Pre A*-algebra A is said to be an ideal of 

A if the following hold 
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(i)   a ,b ∈ I� a ∨ b∈ I 

(ii)  a ∈ I �  x ∧ a∈ I for each x∈A 

3.2.Definition: For any ideal I of a Pre A*-algebra A we define Iβ = {( x , y ) / a ∨

x = a ∨ y  for some a∈ I}. That is Iβ = a
a I

β
∈
� =

aa I

θ
∈
� �   

3.3. Theorem: Iβ is a congruence on a Pre A*-algebra A for any ideal I of A. 

Proof: We know that the union of a class of congruences on A is again a 

congruence on A if the given class is directed above, in the sense that, for any two 

members 
1

β  and 
2

β in that class there exist a member β  in the class containing 

both 
1

β  and 
2

β . 

Now consider C = {
a

β / a∈ I}
 

Since each 
a

β is congruence on A, C is a class of congruence on A. Also for any a, 

b ∈ I we have a ∨ b∈ I and 
a

β ∨ b
β =

a b
β ∨ ∈C 

Therefore C is a directed above class of congruences and a

a I

β
∈

�  (= Iβ ) is a 

congruence on A. 

3.4. Remark: If < x > = {a ∧ x/ a∈A} is the principal ideal generated by an element 

x in a Pre A*-algebra A, then clearly 
x

β ⊆
x

β< > . However equality does not hold 

as in the case of distributive lattices. For, consider the three element Pre A*-algebra 

A = {0,1,2}, < 0 > = {0, 2} and 
0

β =
A

∆ and 
0

β< > = A×A. Hence 
0

β< > ⊆  
0

β . 

3.5. Theorem: Let I be an ideal a Pre A*-algebra A. Then Iβ is the smallest 

congruence on A containing I×I. 

Proof: We know that Iβ is a congruence on a Pre A*-algebra A. 

Also for any x, y ∈ I we have x ∨ y∈ I  

Now (x ∨ y) ∨ x= x ∨ y= ( x ∨ y) ∨ y hence (x, y) ∈ Iβ  (since x ∨ y∈ I) 

Therefore I×I ⊆ Iβ . 

Now β is any congruence on A such that I×I ⊆ β  . 

Then (x, y) ∈ Iβ �  a ∨ x=a ∨ y for some a∈  I 

We have (x ∧  x
 ~

, a) ∈ β    (since x ∧ x
~
∈  I0 ⊆  I and a∈  I) 

    �  (( x ∧  x
 ~

) ∨ x, a ∨ x) ∈ β  (since β is a congruence) 

    �  (x, a ∨ x) ∈ β  and for similar reason (y, a ∨ y) ∈ β     

    �  (x, y)∈ β   (since β is transitive and a ∨ x=a ∨ y) 

Therefore Iβ ⊆ β . 
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Then Iβ is the smallest congruence on A containing I×I. 

3.6. Theorem: For any ideals I and J of a Pre A*-algebra A the following hold. 

         (1) I ⊆  J  � Iβ ⊆  Jβ  

         (2) Iβ �  Jβ =
I Jβ
�

 

         (3) Iβ ∨  Jβ =
I Jβ ∨  

Proof:  Let I and J are ideals of a Pre A*-algebra A. 

(1)   Suppose that I ⊆  J. 

Let a∈  I  �  a ∈J 

Let (x, y) ∈ Iβ �  a ∨ x=a ∨ y for some a∈  I 

                       �  a ∨ x=a ∨ y for some a∈  J 

                       �  (x, y) ∈ Jβ  

Therefore Iβ ⊆  Jβ . 

(2)  Since I � J ⊆ I and I � J ⊆ J we get 
I Jβ
�

 ⊆  Iβ �  Jβ  

Let (x, y) ∈ Iβ �  Jβ �  (x, y) ∈ Iβ and (x, y) ∈ Jβ  

        �  a ∨ x=a ∨ y and  b ∨ x=b ∨ y ,where a∈  I, b∈J 

Now a ∧b∈  I � J and also (a ∧ b) ∨ x = (a ∨ x) ∧  (b ∨ x) 

                                                             = (a ∨ y) ∧  (b ∨ y) 

                                                             = (a ∧ b) ∨ y 

Therefore (x, y) ∈ I Jβ
�

 

Hence Iβ �  Jβ ⊆ I Jβ
�

 

Therefore Iβ �  Jβ =
I Jβ
�

 

(3) Since I ⊆ I ∨ J and J ⊆ I ∨ J we have Iβ ⊆ I Jβ ∨ , Jβ ⊆ I Jβ ∨ and hence Iβ ∨  

Jβ ⊆ I Jβ ∨  

Let (x, y) ∈
zβ  where z∈  I ∨ J 

   �  z = 

1

n

i=
∨  xi  for some xi∈ I ∨ J and (x, y)∈

1 1

n

x
i

β

=

∨
                  =

1

n

i=
∨ β xi      

(since 
a b

β ∨ =
a

β ∨ b
β ) 

     �  (x, y) ∈
1

n

i=
∨ β xi     ⊆ Iβ ∨  Jβ  ( since each xi∈ I or J ) 

     �  (x, y) ∈ Iβ ∨  Jβ  

        �  I J
β ∨ ⊆ Iβ ∨  Jβ  

Therefore Iβ ∨  Jβ =
I Jβ ∨ . 
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Let us recall that the set Con(A) of all congruences on any algebra A is an algebraic 

lattice under the inclusion ordering in which the g.l.b and l.u.b of any subset � of 

Con(A) are given by g.l.b � =
�θ

θ
∈

 and l.u.b � = � {θ 1 ο θ 2 ο …..ο θ n / θ i∈  � 

}. Also from [10] it is known that the set �(A) of all ideals of a Pre A*-algebra A 

forms an algebraic  lattice under the inclusion of ordering. Now we have the 

following. 

3.7. Theorem: Let �(A) be the lattice of all ideals of Pre A*-algebra A. Then I →

Iβ is homomorphism of the lattice �(A) into the lattice Con(A) of all congruences 

on A. 

Proof: From 3.5 Theorem it follows that I → Iβ is lattice homomorphism of �(A) 

into the lattice Con(A). 

The above map I → Iβ need not be an injection, in general. However, we have the 

following. 

3.8. Theorem: For any Pre A*-algebra A, the map I → Iβ of �(A) into Con(A) is 

an injective if A is a Boolean algebra. 

Proof: Suppose that A is a Boolean algebra and I, J are ideals of A such that  

Iβ = Jβ . 

Then for any a∈ I and b∈J, we have a ∨  (a ∨ b) = a ∨ b 

�  (a ∨ b, b) ∈ β a ⊆ Iβ = Jβ  

and hence x ∨  (a ∨ b) = x ∨ b, for some x∈ J which implies that  

       a = a ∧  (x ∨  (a ∨ b)) (since A is a Boolean algebra) 

          = a ∧  (x ∨ b)  

           ∈ J    (Since x ∨ b∈ J, J is an ideal) 

Therefore I ⊆ J and similarly J ⊆ I and hence I = J 

Thus I → Iβ is an injective.       

3.9. Definition: Let A  be a Pre A*-algebra and α ∈Con(A). Then α is called a 

factor congruence if there exist β ∈Con(A) such that α � β =
A

∆  and α ο  

β = A × A. In this case β  is called direct complement of α . 

3.10. Note: In the following theorem we consider Pre A*-algebra A induced by a 

Boolean algebra. 
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3.11. Theorem: Let A be a Pre A*-algebra with 1, θ  is a factor congruence on A 

and β  a direct complement of θ . Then there exist unique a ∈A such that θ =
a

θ

and β =
 a

θ � (=
a

β ). 

Proof: Let 1
 ~

= 0.Then 1 and 0 are identities for operators ∧ and ∨  respectively in 

A. 

We have θ � β =
A∆  and θ ο β = A × A. 

Then clearly θ ο β = β ο θ = A × A. 

Since (0,1) ∈  A × A=θ ο β , there exist a∈A such that (0,a) ∈ β and (a,1) ∈ θ . 

First we observe that a  is a unique element with the above property. If b∈A also is 

such that (0, b) ∈ β and (b, 1) ∈ θ  then by the transitive and symmetry of β and θ  

we get that (a, b) ∈ θ � β =
A∆ , the diagonal of A and hence a=b 

Thus a  is unique such that (0, a) ∈ β and (a,1) ∈ θ  

Now we prove that θ =
a

θ and β =  aθ �  

For any x, y∈A we have 

(0, a ∧ x)= (0 ∧ x, a ∧ x) ∈ β    (since (0, a)∈ β ) and hence (a ∧  x, a ∧ y) ∈ β  

Now    (x, y) ∈ θ  �  (a ∧  x, a ∧  y) ∈  θ � β =
A∆  

                            � a ∧  x = a ∧  y 

                            �  (x, y) ∈
a

θ  

Therefore θ ⊆ a
θ . 

On the other hand for any x ∈A, (a ∧  x, x) = (a ∧ x, 1 ∧ x) ∈ θ     (since (a, 1) ∈
θ )  

Now (x, y) ∈
a

θ � a ∧  x= a ∧  y 

We have (a ∧  x, x) ∈  θ , (a ∧ y, y) ∈ θ  and a ∧  x= a ∧  y �  (x, y) ∈ θ  

Therefore 
a

θ ⊆ θ . 

Thus θ =
a

θ . 

Also from (0, a) ∈ β and (a,1) ∈ θ  we have that (0, a
~
) ∈ θ  and (a

~
,1) ∈ β  and 

by interchanging θ  and β  in the above argument we get that  

               β =
 a

θ � = {( , ) /  }
a

x y A A a x a yβ = ∈ × ∨ = ∨  

we have already proved that a  is unique with this property. 
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