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SUBDIRECTLY IRREDUCIBLE P NEAR-RINGS 
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Abstracts:In this paper, we study p-near-rings ( p is a prime number ). Ratiff [10] in his 

thesis studied p-near-rings. First we present some results about p-near-rings, like (i). Every 

p-near-ring with  left identity is zero symmetric, (ii). Every p-near-ring has IFP. Next we 

study the following properties of p-near-rings like (i). Every distributive idempotent 

element is central, (ii). If p-near-ring N has a multiplicative identity, then all idempotents 

are central, (iii). Every non-trivial p-near-ring has a family of  completely prime 

ideals with trivial intersection, (iv).If every non-trivial homomorphic image of p-near-ring 

N containing a non-zero central idempotent is commutative near-ring, (v). Every 

distributively  generated p-near-ring with identity is a p-ring, (vi). Zero-symmetric 

subdirectly irrerducible IFP p-near-ring N which is not simple, then every non-zero ideal 

of N contains no non-zero idempotent, (vii). Every subdirectly irreducible p-near-ring with 

left identity is integral, (viii). Every subdirectly irreducible p-near-ring which is zero-

symmetric with non-zero distributive elements fulfills cancellation laws, (N, +) is 

commutative  or (N, ⋅⋅⋅⋅ ) is commutative  or N ∈∈∈∈ ηηηη1  and 0, 1 are only idempotents, (ix). 

Every distributively generated p-near-ring is commutative ring and (x). A p-near-ring with 

weak commutative and non-zero distributive elements in every homomorphic image is 

isomorphic to a subdirect product of copies of the field ZP hence p-near-ring [10]. 

Keywords: p-near-ring , distributively  generated p-near-ring , subdirectly irrerducible IFP 

p-near-ring, 

1.1 Definition : Suppose p is a prime number. A near-ring N is called a  

p-near-ring provided that for all x ∈ N : x
P
 = x and px = 0. 

1.2 Theorem [9]: Every p-near-ring with left identity is zero symmetric. 

 Proof: Suppose N is a p-near-ring. 

 Suppose e is a left identity and x ∈ N. 

 By mathematical induction 

       (e+ x0)
P
  =  e + px0 = e + 0 = e 

  ∴  (e+ x0)
P
  = e ∴    e + x0  = e 

  �   x0 = 0 

  ∴ p – near-ring N is zero-symmetric. 

1.3 Theorem : If N is a p-near-ring then ab = 0 � ba = 0 and anb = 0 for all n 

∈ N. i.e Every p-near-ring has IFP. 

 Proof: Since a
P
 = a∀ a ∈ N , N has no non-zero nilpotent elements i.e  a

k
 

= 0 � a = 0 for any positive integer k. 

 If  a, b ∈ N and ab = 0 then ba = 0.   

 For, suppose ab = 0 
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 (ba)
2
  =  (ba)(ba) =  b(ab)a = b0a  = b0 = 0 

 ∴ (ba)
2
 = 0  �  ba = 0 ∴   ab   = 0  �  ba = 0 

 If      ab = 0 �  anb = 0 for every n ∈ N. 

 Suppose ab = 0, n ∈ N. 

  (anb)
2
  =  (anb)(anb)  =  an(ba)nb =  an0nb  = an0  = 0 

 ∴ (anb)
2
 = 0  �  anb = 0. ∴   ab   = 0  �  anb = 0. 

1.4 Theorem: Let N be a p-near-ring then we have  

 (a) Every distributive idempotent element is central. 

(b) If for every idempotent element e and every element x ∈ N,                

      x
2
e = (xe)

2
. 

(c) If N has a multiplicative identity element then all idempotents are   

     central. 

 Proof: (a). Suppose e ∈ N is an idempotent and x ∈ N. 

 First we show that ex = exe 

  (ex - exe) ex = (exe-exe) x  = 0x = 0 

        ∴ (ex - exe) ex =  ex (ex - exe) = 0 ( since ab = 0 � ba = 0 ) 

             (ex - exe) e = exe – exe
2
 = 0 

 ∴ (ex - exe) e = 0  � e (ex - exe) = 0  

 Now    (ex - exe)
2
 = (ex - exe) (ex - exe) 

    = ex (ex - exe) + (-exe) (ex - exe) 

    = 0 – ex0 = 0 – 0  = 0 

  ∴ (ex - exe)
2
 = 0  � ex – exe = 0 

  ∴      ex  = exe 

 Suppose e is distributively idempotent element. 

∴  e ( xe – exe) = 0 � ( xe – exe)e  = 0   (since ab = 0 � ba = 0) 

         �   xee – exee = 0 �   xe – exe = 0 

   ∴      xe = exe     ∴      ex  = xe.  

  ∴ Every distributive idempotent element is central. 

 (b) Suppose e is an idempotent element and x is any element in N. 

  (x –xe)ex = 0 � ex(x-xe) = 0 ( since ab = 0 � ba = 0 ) 

  � xex ( x – xe)  = 0  � xexe (x – xe) = 0 

 ( by IFP) 

  � xe(x-xe)xe = 0 

 Consider        ((x – xe)xe)
2
  = (x-xe)xe(x-xe)xe = (x-xe)0

 = 0 

  ∴ ((x – xe)xe)
2
 = 0  � ((x – xe)xe = 0 

 �   xxe – xexe = 0 �  x
2
e – (xe)

2
 = 0 �  x

2
e = (xe)

2
 

   ∴  x
2
e = (xe)

2
. 

 (c) Suppose N has multiplicative identity 1 and e is an idempotent. 



Subdirectly ©���ª��l«�� P Near-Rings 

ISBN - 978-93-81583-56-2 405 

 (e - 1) e = 0 �  e (e-1) = 0 (since ab = 0 � ba = 0) 

       (e - 1) xe  =   exe - xe 

   Now    (exe - xe)
2
 =  (exe - xe) (exe - xe) =  (exe - xe) e (e-1) xe 

    =  (exe – xe)0xe  =  0 

    ∴(exe – xe)
 2
 =  0 

  �     exe -  xe = 0 �       xe   =  exe 

 But e is idempotent, we have ex = exe. ∴     ex =  xe 

 ∴ All idempotent elements are central. 

1.5 Theorem  : A non-trivial p-near-ring N contains a family of completely prime 

ideals with trivial intersection. 

Proof: Since N has no non-zero nilpotent elements, then N has 

multiplicative sub semi-groups which do not contain zero element. By 

Zorn’s lemma, let M be any maximal multiplicative sub semi-group which 

do not contain zero element.  

Define A(M) = {x ∈ N/ xa = 0 for atleast a ∈ N} 

Claim : A(M) is a prime ideal. 

First we show that A(M) is normal subgroup of (N, +). 

Let u, v ∈ A(M) 

 � ∃ a, b ∈ M � ua = 0, vb = 0 � uab = 0, vab = 0 (by IFP) 

 � (u - v)ab = 0 � (u - v) ∈ A(M) 

Let u ∈ A(M) and x ∈ N then since u ∈ A(M) � ∃ a ∈ M � ua = 0 

 � (x + u - x)a = xa + ua – xa = 0  ( since ua = 0) 

 � (x + u – x) ∈ A(M) 

∴ A(M) is a normal subgroup of (N, +). 

Let x ∈ N and u ∈ A(M) 

Since u ∈ A(M) ∃ a ∈ M � ua = 0 

 � uxa = 0  ( by IFP) � ux ∈ A(M) 

Let x, y ∈ N and u ∈ A(M) 

Since u ∈ A(M) ∃ a ∈ M � ua = 0 

Consider   [y(x+u) – yx] a = y (x+u) a – yxa = y(xa + ua) – yxa 

    = yxa – yxa  = 0 

 ∴  [y(x+u) – yx] ∈ A(M) ∴ A(M) is an ideal. 

Suppose x ∉ M. Then the multiplicative sub semi-group generated by M 

and x must contain zero. Since M has no non-zero nilpotent elements, 

some finite product containing x has atleast one factor and having atleast 

one factor from M must be zero. Repeated application of IFP, there exist 

an m ∈ M such that xm is nilpotent so xm = 0 

 � the set theoretical compliment of A(M) is M. 

 ∴ A(M) is a completely prime ideal. 

And clearly every non-zero element of M is excluded from atleast one of 

the prime ideals of A(M). 

∴ N contains a family of completely prime ideals with trivial intersection. 
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1.6 Theorem : N is a non-trivial p-near-ring with identity and every non trivial 

homomorphic image of N contains a non-zero central idempotent, then the 

additive group of N is commutative. 

1.7 Theorem : Distributively  generated p-near-ring N with identity is a 

commutative ring. 

 Proof: Suppose a is a distributive idempotent element in N by the previous 

1.4 theorem(a), a is central. So by above 1.6 theorem , (N, +) is 

commutative. By a known result we know that (  N, +) is a 

commutative. 

By a Jacobson theorem for rings in [29]. ∴ N is a p- ring. 

1.8 Theorem: Every p-near-ring N with identity is a p-ring. 

 Proof: Suppose N is a p-near-ring with identity 1.  

                                 _                             

� 1 is non-zero central idempotent. 

                          __                             

 Any  near-ring in any ring N = N/P   where P = A(M). 

 So by 1.6 theorem ( N, +) is commutative. 

 For every a ∈ N , a
P-1 

 is an idempotent. 

Since N has multiplicative identity 1, then all idempotents are central.  

Since every element a in N can be written as sum of idempotents. So N is 

distributively generated p-near-ring. 

  ∴  (N,  ⋅⋅⋅⋅ ) is commutative. ∴  N is a p-ring. 

 

1.9 Definition:  A near-ring N is called strongly uniform if ∀ n ∈ N : ( 0: n) = 

0 or ( 0 : n ) = N but ∃ m ∈ N : ( 0, m) = {0}. 

1.10 Note: Suppose N is subdirectly irreducible zero-symmetric simple p-near-

ring then N is strongly uniform or for all x, y ∈ N : xy = 0. 

 Proof: Since ( 0 : n) is an ideal in N. since N is subdirectly irreducible with 

IFP. ���� (0 : n) = N or ( 0: n) = 0. ∴ N is strongly uniform. 

 Suppose ( 0 : n) = N ∀ n ∈ N. 

 Let y ∈ N  � ( 0 : y ) = N � xy = 0 ∀ x ∈ N.∴ ∀ x, y ∈ N ; xy = 0. 

Main Theorems 

2. 1 Theorem: Suppose N is zero-symmetric sub-directly irreducible IFP p-

near-ring which is not simple, then no non-zero ideal contains a non-zero 

idempotent. 
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 Proof: Suppose P is a non-zero ideal ≠ N . Suppose P contains a non-zero 

idempotent e ≠ 0. 

 Claim: e is right identity. 

 Suppose e is not right identity. �   ∃  x ∈ N � xe ≠ x 

  �  xe – x ≠ 0 � xe – x ∈ ( 0 : e ), e ∈ ( 0 : e ) and e = e
2
 = 0  , it is a 

contradiction. � P = N , it is a contradiction. 

 ∴ P does not contain idempotent element . 

 ∴ No non-zero ideal of N contains a non-zero idempotent. 

2.2 Theorem: Suppose N is subdirectly irreducible p-near-ring which is not 

zero-symmetric nor constant then every non-zero ideal P which contains 

non-zero idempotent then P = N0. 

 Proof: Suppose N is subdirectly irreducible p-near-ring which is not zero-

symmetric nor constant. 

 Suppose P is a non-zero ideal. Clearly P ⊆ ( 0: 0), the p has a non-zero 

idempotent e ≠ 0 (by above 2.11 theorem). Then e is right identity in N. 

 Let x ∈ ( 0 : 0 ) � x0 = 0 

 ∴ x  = xe ∈ P (since e is a right identity and e ∈ P & ∴xe ∈ P). 

  ∴ P = ( 0 : 0 ) = N0. 

2.3 Definition. Consider the following properties : 

 (P0) : ∀ x ∈ N ∃ n(x) > 1 : x 
n(x)

 = x. 

 (P1) : (P0) and  N ∈ η0. 

 (P2) : ∀ x, y ∈ N ∃ n( x, y ) >1 : ( xy – yx ) 
n ( x, y )

 = xy – yx and N ∈ η0. 

 (P3) : ∀ x, y ∈ N : xyz = xzy ( “ Weak commutative”). 

 (P4) : ∀ x, y ∈ N ∀ I <| N : xy ∈ I � yx ∈ I. 

2.4  Theorem . Every subdirectly irreducible p-near-ring N with left identity. 

Then n is integral (i.e has no non-zero zero divisors). 

 Proof: Suppose N is a subdirectly irreducible p-near-ring  with left 

identity. 
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 Since N has left identity , then N is zero symmetric. 

 Since a
p
 = a ∀ a ∈ N , N has no non-zero nilpotent elements i.e a

k
 = 0 for 

some k ∈ N � a = 0. 

 Suppose ab = 0 for some a, b ∈ N.  

 Then (ba)
2
 = (ba)(ba) = b(ab)a = b(0)a = b0 = 0. 

  ∴ (ba)
2
 = 0 �  ba = 0. ∴ ab = 0 � ba = 0. 

 Suppose ab = 0 & n ∈ N. 

 Consider     (anb)
2
  = (anb)(anb) =  an(ba) nb = an (0) nb = an(0nb) 

   = an0  = 0. 

  ∴ (anb)
2
 = 0 � anb = 0  ∴ ab = 0 � anb = 0 ∀ n ∈N. 

 Let x ∈ N* Then ({x
k
 / k =1,2,..p-1}, ⋅) does not contain 0 and 

contained in the semi group Mx maximal for not containing 0 ( by Zorn’s 

lemma). 

 Let Ix = ∪∪∪∪ ( 0 : m).                                                                                                                    

.          
m ∈ M

x 

 Consider ( 0 : m ), ( 0 : n ) for m , n ∈ Mx. 

 Clearly mn ∈ Mx. 

 Let d ∈ ( 0 : m)  � dm = 0 � dmn = 0 

     � d ∈ ( 0 : mn ) 

  ∴ ( 0 : m )  ⊆ ( 0 : mn ) 

 Let d ∈ ( 0 : n)  � dn = 0 

 � dmn = 0  (by IFP of N)  � d ∈ ( 0 : mn ) 

  ∴ ( 0 : n )  ⊆ ( 0 : mn ) 

 ∴ Ix is a union of directed set of ideals. ∴ Ix is an ideal. 

 Claim:  x ∉ Ix 

 Suppose x ∈ Ix � x ∈ ( 0 : m ) for some m ∈ Mx � xm = 0 
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 Since x ∈  Mx , m ∈ Mx  � xm ∈ Mx  � 0 ∉ Mx.  

 It is a contradiction. ∴ x ∉ Ix.  

  ∴   ∩∩∩∩  Iz = {0}                                                                                 .                
z ∈∈∈∈ N * 

 Since N is subdirectly irreducible , ∃ y ∈ N*,  Iy = {0}   

 Claim:  My  = N* Suppose n ∈ N , n ∉ My  

 � the sub semigroup generated by My and N contains 0. Such product has 

one of the following forms . 

 m1nm2 = 0, nm
l
=0, m

ll
n=0, n=0. ( for m1,m2 ,m

l
, m

ll
n∈ My .) 

 Suppose m1nm2 = 0 

 � m1n ∈ ( 0 : m2 ) � m1n = 0 since ( 0 : m2 ) ⊆  Iy=  {0} 

 � m1n = 0  � nm1 = 0  (by IFP of N) 

  � n ∈ ( 0 : m1 ) = {0} � n = 0 

 From the three cases, n = 0  ∴ n = 0 

 My = N*  Let x, y ∈ N & x ≠ 0 , y ≠ 0  

 x ≠ 0 , y ≠ 0  � x, y ∈ N*  � xy ∈ My  � xy ≠ 0 

 ∴ N is integral. 

2.5 Theorem : N is a subdirectly irreducible, zero-symmetric, p-near-ring with  

Nd ≠ {0}, then N fulfils both cancellation laws, (N, +) is abelian and either 

(N, ⋅ ) is commutative or N ∈ η1 and 0 ,1 are only idempotents. 

 Proof: Suppose e is any non-zero idempotent and d ∈ Nd and d ≠ 0. 

 Let  n ∈ N. (ne – n)e = 0 � ne – n = 0 (since e ≠ 0 & N is integral) 

    d( en – n )  = den – dn = dn – dn = 0.  

   (since every non-zero idempotent is right identity) 

 ∴ en – n = 0 (since d ≠ 0 )  � en = n 

 ∴ N has an identity 1 and each non-zero idempotent = 2. 



Mathematical Sciences International Research Journal, Vol 1 No.2 ISSN : 2278-8697 

ISBN - 978-93-81583-56-2 410 

 Cancellation laws : suppose a, b , c ∈ N with ab = ac , a ≠ 0. 

 If a is central,    ab = ac 

 � ba – ca = 0 � ( b – c )a = 0 �  b – c = 0    since a ≠ 0. 

  ∴    b  = c. 

 Suppose a is not central. 

  � ∃ f ∈ N* � af ≠ fa i.e af – fa ≠ 0  

  � ( af – fa ) a ≠ 0 

  ( afa – faa )
p
   = ( afa – faa ) 

  ( afa – faa )
p-1

 = e = 1 ( e ≠ 0, e
2
 = e ) 

 ∴ ( afa – faa )
p-2

 ( afa – faa )
 
a = 1  ∴ a has left inverse. 

 ∴ b = c ∴ ab = ac or ba = ca  � b = c.     ( N , + ) is 

abelian. 

 2 = 1 + 1 Suppose 2 = 0 � 2x = 0 ∀ x ∈ N 

  �  ( N , + ) is abelian. 

 Suppose 2 ≠ 0. Then 2 is central or not central. 

 Suppose 2 is central   

     2 ( n + m) = ( 1 + 1 ) n + m = n + m + n + m  

  ( n + m ) 2  = n2 + m2  = 2n + 2m 

    = n + n + m + m. 

 ∴ n + m + n + M  = n + n + m + m. �    m + n  = n + m 

 ∴  ( N , + ) is abelian. 

 Suppose 2 is not central. Since  2 ≠ 0, so 2 has left inverse. 

 Suppose u is left inverse of 2. 

 Consider ( 1 – 2u) 2  = 2 – 2u2  = 2 – 2⋅1 = 2 – 2 = 0 

  �    1 – 2u  = 0  since 2 ≠ 0 
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  ∴    2u = 1 ∴    u2 = 2u = 1 ∴   u is right inverse of 2 

 Let r ∈ N and put h = ur 

   h + h = ur + ur  = (u + u) r = 2ur = 1r = r  ∴        h + h 

= r 

 Suppose r = h
l
 + h

l
 � h + h = h

l
 + h

l
 

  � 2h = 2h
l  

�  h  =  h
l
 

 Suppose n ∈ N and n (-1) = n 

 If n is central, n (-1) = n � (-1)n = n  

 �  - n = n  � n + n = 0  �  2n = 0 �  

n = 0  

 Suppose n is not central. 

 Claim: n = 0 Suppose n ≠ 0 � n has left inverse n
– 2.

  

 Since n (-1) = n � n
– 1

n(-1) = n
– 1

n �  1(-1) = 1 � -1 = 1 

 2 = 1 + 1 = 1 + (-1) = 0. It is a contradiction. 

 ∴ By a proposition (2.109(c) [21]) implies , ( N , + ) is abelian. 

2.6 Theorem : Every distributively generated  near-ring N is commutative. 

 Proof: Suppose N ∈η; then Nd ≠ 0. Since is Ni  integral. ( N , + ) is abelian. 

 Since  Ni  is distributively generated abelian, so Ni is a ring (6.6c [1]) and 

Ni  is commutative ring. Suppose  Ni  ∉ N, so Ni is commutative ring.  

 Since all Ni ‘s are commutative near-rings, so N is a commutative ring. 

2.7 Corollary : N is a p-near-ring with IFP and every non-zero homomorphic 

image of N contains non-zero distributive elements, then N ∈ η0 and a 

subdirect product of near-fields. 

 Proof: Since N is a p-near-ring with IFP 

 ∴∴∴∴ N0  = ( 0 : 0 )   = N ∴∴∴∴ N / N0 is constant.   ∴ N has a strong IFP. 

 Since  N ∈ η0  is p –ring , N is isomorphic to a subdirect product of simple 

integral near-ring ∈  η0 with a right identity (9.10 [1] ). 
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 � Every Ni is abelian and either commutative or Ni ∈ η2. So in any case 

Ni, is near-field. 

2.8 Corollary : Every distributively generated p-near-ring is a subdirect 

product of commutative fields and hence a commutative ring. 

2.9 Corollary: A p-near-ring with IFP and weak commutative is a subdirect 

product of p-near-ring Ni ≠ 0. 

 Proof: Every  Ni ≠ 0 and is simple.  Suppose Ni has one right identity ∀ x 

∈ Ni*,  x
p-1

 = e.  Every non-zero idempotent is a right identity ∀ x, y ∈ 

Ni* :     xy  = x
p
y  = x

p-1
xy = exy = eyx = y

p-1
yx = y

p
x  = yx 

  ∴ xy  = yx ∴ Ni is commutative, 

 ∴ e  is an identity & Ni is a simple integral domain, so a field.  

2.10 Corollary : Suppose N is a p-near-ring with weak commutative and every 

non-zero homomorphic image has non-zero distributive elements. Then N 

is a subdirect product of commutative fields and hence commutative ring. 

 Proof: Since N is p-near-ring, so N has IFP � N ∈ η0.  

 N is a subdirect product of subdirectly irreducible p-near-ring Ni.  

 Since Ni ≠ {0}, so every non-zero idempotent of Ni is 2. Clearly Ni ∈ η0 

 and by 2.16 theorem  Ni is simple and Ni is commutative field. 

 ∴ (Ni) 0 =Ni  , (Ni) d ≠ {0},  

 ∴ By above corollary, Ni is commutative field. 

 ∴ N is a commutative ring with identity 2. 
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