SUBDIRECTLY IRREDUCIBLE P NEAR-RINGS

D B Ratnakar¹, P.Vijaya Vani², B.Vijaya Kumar³, P.Koteswara Rao⁴

Abstracts: In this paper, we study p-near-rings (p is a prime number). Ratiff [10] in his thesis studied p-near-rings. First we present some results about p-near-rings, like (i). Every p-near-ring with left identity is zero symmetric, (ii). Every p-near-ring has IFP. Next we study the following properties of p-near-rings like (i). Every distributive idempotent element is central, (ii). If p-near-ring N has a multiplicative identity, then all idempotents are central, (iii). Every non-trivial p-near-ring has a family of completely prime ideals with trivial intersection, (iv). If every non-trivial homomorphic image of p-near-ring N containing a non-zero central idempotent is commutative near-ring, (v). Every distributively generated p-near-ring with identity is a p-ring, (vi). Zero-symmetric subdirectly irrerducible IFP p-near-ring N which is not simple, then every non-zero ideal of N contains no non-zero idempotent, (vii). Every subdirectly irreducible p-near-ring with left identity is integral, (viii). Every subdirectly irreducible p-near-ring which is zerosymmetric with non-zero distributive elements fulfills cancellation laws, (N, +) is commutative or (N, \cdot) is commutative or $N \in \eta_1$ and 0, 1 are only idempotents, (ix). Every distributively generated p-near-ring is commutative ring and (x). A p-near-ring with weak commutative and non-zero distributive elements in every homomorphic image is isomorphic to a subdirect product of copies of the field Z_P hence p-near-ring [10].

Keywords: p-near-ring, distributively generated p-near-ring, subdirectly irrerducible IFP p-near-ring,

- **1.1 Definition :** Suppose p is a prime number. A near-ring N is called a p-near-ring provided that for all $x \in N : x^{P} = x$ and px = 0.
- 1.2 Theorem [9]: Every p-near-ring with left identity is zero symmetric.
 Proof: Suppose N is a p-near-ring.
 Suppose e is a left identity and x ∈ N.
 By mathematical induction

 $(e+x0)^{p} = e + px0 = e + 0 = e$ $\therefore (e+x0)^{p} = e \quad \therefore \quad e+x0 = e$ $\Rightarrow x0 = 0$ $\therefore p - near-ring N is zero-symmetric.$

1.3 Theorem : If N is a p-near-ring then $ab = 0 \Rightarrow ba = 0$ and anb = 0 for all n \in N. i.e Every p-near-ring has IFP.

Proof: Since $a^P = a \forall a \in N$, N has no non-zero nilpotent elements i.e $a^k = 0 \Rightarrow a = 0$ for any positive integer k. If $a, b \in N$ and ab = 0 then ba = 0. For, suppose ab = 0 Mathematical Sciences International Research Journal, Vol 1 No.2

 $(ba)^2$ = (ba)(ba) = b(ab)a= b0a= b0= 0 \therefore (ba)² = 0 \Rightarrow ba = 0 \therefore ab = 0 \Rightarrow ba = 0 If ab = 0 \Rightarrow anb = 0 for every $n \in N$. Suppose $ab = 0, n \in N$. $(anb)^2 = (anb)(anb)$ = an(ba)nb = an0nb = an0 = 0 \therefore (anb)² = 0 \Rightarrow anb = 0. \therefore ab = 0 \Rightarrow anb = 0. 1.4 **Theorem:** Let N be a p-near-ring then we have (a) Every distributive idempotent element is central. (b) If for every idempotent element e and every element $x \in N$, $x^2 e = (xe)^2$. (c) If N has a multiplicative identity element then all idempotents are central. **Proof**: (a). Suppose $e \in N$ is an idempotent and $x \in N$. First we show that ex = exe= 0x= 0(ex - exe) ex = (exe-exe) x $\therefore (ex - exe) ex = ex (ex - exe) = 0$ (since $ab = 0 \Rightarrow ba = 0$) (ex - exe) e $= exe - exe^2$ = 0= 0(ex - exe) e = 0*:*. \Rightarrow e (ex - exe) Now $(ex - exe)^2$ = (ex - exe) (ex - exe)= ex (ex - exe) + (-exe) (ex - exe)= 0 - ex0= 0 - 0 = 0 \therefore (ex - exe)² = 0 \Rightarrow ex - exe = 0= exe *.*:. ex Suppose e is distributively idempotent element. e(xe - exe) \Rightarrow (xe - exe)e = 0 (since ab = 0 \Rightarrow ba = 0) = 0*.*.. \Rightarrow xe - exe = 0 \Rightarrow xee - exee = 0 *.*.. xe = exe*:*. = xe.ex : Every distributive idempotent element is central. (b) Suppose e is an idempotent element and x is any element in N. (x - xe)ex = 0 $\Rightarrow ex(x - xe) = 0$ (since $ab = 0 \Rightarrow ba = 0$) $\Rightarrow xex (x - xe) = 0$ \Rightarrow xexe (x - xe) = 0 (by IFP) \Rightarrow xe(x-xe)xe = 0 Consider $((x - xe)xe)^2$ = (x-xe)xe(x-xe)xe= (x-xe)0= 0 $\therefore ((x - xe)xe)^2 = 0$ $\Rightarrow ((x - xe)xe = 0)$ $\Rightarrow x^2 e - (xe)^2 = 0$ \Rightarrow x²e = (xe)² \Rightarrow xxe - xexe = 0 $x^2 e = (xe)^2.$ *:*.. (c) Suppose N has multiplicative identity 1 and e is an idempotent.

ISBN - 978-93-81583-56-2

(e - 1) e = 0e(e-1) = 0(since $ab = 0 \Rightarrow ba = 0$) \Rightarrow (e - 1) xe = exe - xe Now $(exe - xe)^2$ = (exe - xe) (exe - xe) = (exe - xe) e (e-1) xe = (exe - xe)0xe= 0 \therefore (exe - xe)² = 0 \Rightarrow exe - $xe = 0 \Longrightarrow$ = exe xe But e is idempotent, we have ex = exe. *.*.. ex = xe: All idempotent elements are central.

1.5 Theorem : A non-trivial p-near-ring N contains a family of completely prime ideals with trivial intersection.

Proof: Since N has no non-zero nilpotent elements, then N has multiplicative sub semi-groups which do not contain zero element. By Zorn's lemma, let M be any maximal multiplicative sub semi-group which do not contain zero element. Define $A(M) = \{x \in N | xa = 0 \text{ for at least } a \in N\}$ Claim : A(M) is a prime ideal. First we show that A(M) is normal subgroup of (N, +). Let $u, v \in A(M)$ $\Rightarrow \exists a, b \in M \ni ua = 0, vb = 0$ \Rightarrow uab = 0, vab = 0 (by IFP) \Rightarrow (u - v)ab = 0 \Rightarrow (u - v) \in A(M) Let $u \in A(M)$ and $x \in N$ then since $u \in A(M) \Rightarrow \exists a \in M$ $\exists ua = 0$ \Rightarrow (x + u - x)a = xa + ua - xa = 0 (since ua = 0) \Rightarrow (x + u - x) \in A(M) \therefore A(M) is a normal subgroup of (N, +). Let $x \in N$ and $u \in A(M)$ Since $u \in A(M) \exists a \in M \ni ua = 0$ \Rightarrow uxa = 0 (by IFP) \Rightarrow ux \in A(M) Let x, $y \in N$ and $u \in A(M)$ Since $u \in A(M) \exists a \in M \ni ua = 0$ Consider [y(x+u) - yx] a = y (x+u) a - yxa = y(xa + ua) - yxa= yxa - yxa = 0 \therefore [y(x+u) – yx] \in A(M) \therefore A(M) is an ideal. Suppose $x \notin M$. Then the multiplicative sub semi-group generated by M and x must contain zero. Since M has no non-zero nilpotent elements, some finite product containing x has atleast one factor and having atleast one factor from M must be zero. Repeated application of IFP, there exist

an $m \in M$ such that xm is nilpotent so xm = 0

 \Rightarrow the set theoretical compliment of A(M) is M.

 \therefore A(M) is a completely prime ideal.

And clearly every non-zero element of M is excluded from atleast one of the prime ideals of A(M).

:. N contains a family of completely prime ideals with trivial intersection.

- **1.6** Theorem : N is a non-trivial p-near-ring with identity and every non trivial homomorphic image of N contains a non-zero central idempotent, then the additive group of N is commutative.
- **1.7 Theorem :** Distributively generated p-near-ring N with identity is a commutative ring.

Proof: Suppose a is a distributive idempotent element in N by the previous 1.4 theorem(a), a is central. So by above 1.6 theorem , (N, +) is commutative. By a known result we know that (N, +) is a commutative.

By a Jacobson theorem for rings in [29]... N is a p- ring. **1.8** Theorem: Every p-near-ring N with identity is a p-ring.

Proof: Suppose N is a p-near-ring with identity 1.

 \Rightarrow 1 is non-zero central idempotent.

Any near-ring in any ring N = N/P where P = A(M). So by 1.6 theorem (N, +) is commutative. For every $a \in N$, a^{P-1} is an idempotent. Since N has multiplicative identity 1, then all idempotents are central. Since every element a in N can be written as sum of idempotents. So N is distributively generated p-near-ring.

 \therefore (N, \cdot) is commutative. \therefore N is a p-ring.

- **1.9 Definition:** A near-ring N is called strongly uniform if $\forall n \in N : (0:n) = 0$ or (0:n) = N but $\exists m \in N : (0, m) = \{0\}$.
- **1.10** Note: Suppose N is subdirectly irreducible zero-symmetric simple p-nearring then N is strongly uniform or for all $x, y \in N : xy = 0$.

Proof: Since (0:n) is an ideal in N. since N is subdirectly irreducible with IFP. $\Rightarrow (0:n) = N$ or (0:n) = 0. \therefore N is strongly uniform.

Suppose $(0:n) = N \forall n \in N$.

Let $y \in N$ $\Rightarrow (0: y) = N \Rightarrow xy = 0 \forall x \in N \therefore \forall x, y \in N; xy = 0.$

Main Theorems

2.1 Theorem: Suppose N is zero-symmetric sub-directly irreducible IFP pnear-ring which is not simple, then no non-zero ideal contains a non-zero idempotent. **Proof**: Suppose P is a non-zero ideal \neq N. Suppose P contains a non-zero idempotent e \neq 0.

Claim: e is right identity.

Suppose e is not right identity. $\Rightarrow \exists x \in N \ \exists x \in x$

 $\Rightarrow xe - x \neq 0 \qquad \Rightarrow xe - x \in (0:e), e \in (0:e) \text{ and } e = e^2 = 0 \text{ , it is a contradiction.}$

... P does not contain idempotent element .

- :. No non-zero ideal of N contains a non-zero idempotent.
- **2.2** Theorem: Suppose N is subdirectly irreducible p-near-ring which is not zero-symmetric nor constant then every non-zero ideal P which contains non-zero idempotent then $P = N_0$.

Proof: Suppose N is subdirectly irreducible p-near-ring which is not zero-symmetric nor constant.

Suppose P is a non-zero ideal. Clearly $P \subseteq (0; 0)$, the p has a non-zero idempotent $e \neq 0$ (by above 2.11 theorem). Then e is right identity in N.

Let $x \in (0:0) \Rightarrow x0 = 0$

 \therefore x = xe \in P (since e is a right identity and e \in P & \therefore xe \in P).

$$\therefore P = (0:0) = N_0.$$

2.3 Definition. Consider the following properties :

 $(\mathbf{P}_0): \forall x \in N \exists n(x) > 1 : x^{n(x)} = x.$

 (\mathbf{P}_1) : (\mathbf{P}_0) and $N \in \eta_0$.

 (\mathbf{P}_2) : $\forall x, y \in \mathbb{N} \exists n(x, y) > 1 : (xy - yx)^{n(x, y)} = xy - yx$ and $\mathbb{N} \in \eta_0$.

 (\mathbf{P}_3) : $\forall x, y \in N$: xyz = xzy ("Weak commutative").

 $(\mathbf{P}_4): \forall x, y \in N \forall I \leq N : xy \in I \Longrightarrow yx \in I.$

2.4 Theorem . Every subdirectly irreducible p-near-ring N with left identity. Then n is integral (i.e has no non-zero zero divisors).

Proof: Suppose N is a subdirectly irreducible p-near-ring with left identity.

Since N has left identity, then N is zero symmetric.

Since $a^p=a ~\forall~a\in N$, N has no non-zero nilpotent elements i.e $a^k=0$ for some $k\in N \Rightarrow a=0.$

Suppose ab = 0 for some $a, b \in N$.

Then $(ba)^2 = (ba)(ba) = b(ab)a = b(0)a = b0 = 0$.

 $\therefore (ba)^2 = 0 \Longrightarrow ba = 0. \qquad \therefore ab = 0 \Longrightarrow ba = 0.$

Suppose $ab = 0 \& n \in N$.

Consider $(anb)^2 = (anb)(anb) = an(ba) nb = an (0) nb = an(0nb)$

= an0 = 0.

 $\therefore (anb)^2 = 0 \Rightarrow anb = 0 \quad \therefore ab = 0 \Rightarrow anb = 0 \forall n \in N.$

Let $x \in N^*$ Then $(\{x^k / k = 1, 2, ... p-1\}, \cdot)$ does not contain 0 and contained in the semi group M_x maximal for not containing 0 (by Zorn's lemma).

Let $I_x = \bigcup_{\substack{m \in M \\ x}} (0:m).$

Consider (0:m), (0:n) for m, $n \in M_x$.

Clearly $mn \in M_x$.

Let $d \in (0:m) \implies dm = 0 \implies dmn = 0$

 $\Rightarrow d \in (0:mn)$

 $\therefore (0:m) \subseteq (0:mn)$

Let $d \in (0:n) \implies dn = 0$

 $\Rightarrow dmn = 0 \qquad (by IFP of N) \qquad \Rightarrow d \in (0:mn)$ $\therefore (0:n) \qquad \subseteq (0:mn)$

 \therefore I_x is a union of directed set of ideals. \therefore I_x is an ideal.

Claim: $x \notin I_x$

Suppose $x \in I_x \implies x \in (0:m)$ for some $m \in M_x \implies xm = 0$

Since $x \in M_x$, $m \in M_x \Rightarrow xm \in M_x \Rightarrow 0 \notin M_x$. It is a contradiction. ∴ x ∉ I_x. $\therefore \cap I_z = \{0\}$

z∈N*

Since N is subdirectly irreducible, $\exists y \in N^*$, $I_y = \{0\}$

Claim: $M_v = N^*$ Suppose $n \in N$, $n \notin M_v$

 \Rightarrow the sub semigroup generated by M_v and N contains 0. Such product has one of the following forms .

 $m_1 n m_2 = 0$, $n m^1 = 0$, $m^{11} n = 0$, n = 0. (for $m_1, m_2, m^1, m^{11} n \in M_v$.)

Suppose $m_1 n m_2 = 0$

 \Rightarrow m₁n = 0 since (0:m₂) \subseteq I_v= {0} \Rightarrow m₁n \in (0:m₂) \Rightarrow nm₁ = 0 (by IFP of N) \Rightarrow m₁n = 0

 \Rightarrow n \in (0:m₁) = {0} \Rightarrow n = 0

 \therefore n = 0

From the three cases, n = 0

 $M_v = N^*$ Let x, $y \in N \& x \neq 0$, $y \neq 0$

 $x \neq 0$, $y \neq 0$ \Rightarrow x, y \in N* $\Rightarrow xy \in M_v \Rightarrow xy \neq 0$

: N is integral.

2.5 Theorem : N is a subdirectly irreducible, zero-symmetric, p-near-ring with $N_d \neq \{0\}$, then N fulfils both cancellation laws, (N, +) is abelian and either (N, \cdot) is commutative or $N \in \eta_1$ and 0, 1 are only idempotents.

Proof: Suppose e is any non-zero idempotent and $d \in N_d$ and $d \neq 0$.

Let $n \in N$. $(ne - n)e = 0 \implies ne - n = 0$ (since $e \neq 0$ & N is integral) d(en - n)= den - dn = dn - dn = 0.(since every non-zero idempotent is right identity) \therefore en – n = 0 (since $d \neq 0$) \Rightarrow en = n \therefore N has an identity 1 and each non-zero idempotent = 2.

Cancellation laws : suppose a, b , $c \in N$ with ab = ac , $a \neq 0$. If a is central, ab = ac \Rightarrow ba - ca = 0 \Rightarrow (b - c)a = 0 \Rightarrow b - c = 0 since a \neq 0. \therefore b = c. Suppose a is not central. $\Rightarrow \exists f \in N^* \exists af \neq fa i.e af - fa \neq 0$ \Rightarrow (af – fa) a \neq 0 $(afa - faa)^p = (afa - faa)$ $(afa - faa)^{p-1} = e = 1 (e \neq 0, e^2 = e)$:. $(afa - faa)^{p-2} (afa - faa) a = 1$:. a has left inverse. \therefore b = c \therefore ab = ac or ba = ca \Rightarrow b = c. (N, +) is abelian. Suppose $2 = 0 \Rightarrow 2x = 0 \forall x \in N$ 2 = 1 + 1(N, +) is abelian. \Rightarrow Suppose $2 \neq 0$. Then 2 is central or not central. Suppose 2 is central 2(n+m) = (1+1)n+m = n+m+n+m= n2 + m2= 2n + 2m(n + m) 2= n + n + m + m. \therefore n + m + n + M $= n + n + m + m. \Rightarrow m + n$ = n + m(N, +) is abelian. *.*.. Suppose 2 is not central. Since $2 \neq 0$, so 2 has left inverse. Suppose u is left inverse of 2. Consider (1 – 2u) 2 = 2 - 2u2 $= 2 - 2 \cdot 1$ = 2 - 2 = 0 $\Rightarrow 1-2u$ = 0 since $2 \neq 0$

 $\therefore 2u = 1$ \therefore u2 = 2u = 1 \therefore u is right inverse of 2 Let $r \in N$ and put h = urh + h = ur + ur = (u + u) r = 2ur = 1r = r*:*.. h + h= r Suppose $r = h^{1} + h^{1} \Longrightarrow h + h = h^{1} + h^{1}$ \Rightarrow h = h¹ $\Rightarrow 2h = 2h^{1}$ Suppose $n \in N$ and n(-1) = nIf n is central, $n(-1) = n \implies (-1)n = n$ \Rightarrow n + n = 0 $\Rightarrow 2n = 0$ $\Rightarrow -n = n$ \Rightarrow n = 0Suppose n is not central. Claim: n = 0Suppose $n \neq 0 \Rightarrow n$ has left inverse n^{-2} . Since $n(-1) = n \Rightarrow n^{-1}n(-1) = n^{-1}n \Rightarrow 1(-1) = 1 \Rightarrow -1 = 1$ 2 = 1 + 1 = 1 + (-1) = 0. It is a contradiction. : By a proposition (2.109(c) [21]) implies , (N, +) is abelian. Theorem : Every distributively generated near-ring N is commutative. **Proof:** Suppose $N \in \eta$; then $N_d \neq 0$. Since is N_i integral. (N, +) is abelian.

Since N_i is distributively generated abelian, so N_i is a ring (6.6c [1]) and N_i is commutative ring. Suppose $N_i \notin N$, so N_i is commutative ring.

Since all N_i 's are commutative near-rings, so N is a commutative ring.

2.7 **Corollary :** N is a p-near-ring with IFP and every non-zero homomorphic image of N contains non-zero distributive elements, then $N \in \eta_0$ and a subdirect product of near-fields.

Proof: Since N is a p-near-ring with IFP

 \therefore N₀ = (0:0) = N \therefore N / N₀ is constant. \therefore N has a strong IFP.

Since $N \in \eta_0$ is p-ring, N is isomorphic to a subdirect product of simple integral near-ring $\in \eta_0$ with a right identity (9.10 [1]).

2.6

 \Rightarrow Every N_i is abelian and either commutative or $N_i \in \eta_{2.}$ So in any case $N_i,$ is near-field.

- **2.8 Corollary :** Every distributively generated p-near-ring is a subdirect product of commutative fields and hence a commutative ring.
- **2.9** Corollary: A p-near-ring with IFP and weak commutative is a subdirect product of p-near-ring $N_i \neq 0$.

 \therefore xy = yx \therefore N_i is commutative,

 \therefore e is an identity & N_i is a simple integral domain, so a field.

2.10 Corollary : Suppose N is a p-near-ring with weak commutative and every non-zero homomorphic image has non-zero distributive elements. Then N is a subdirect product of commutative fields and hence commutative ring.

Proof: Since N is p-near-ring, so N has IFP \Rightarrow N $\in \eta_0$.

N is a subdirect product of subdirectly irreducible p-near-ring N_i.

Since $N_i \neq \{0\}$, so every non-zero idempotent of N_i is 2. Clearly $N_i \in \eta_0$

and by 2.16 theorem N_i is simple and N_i is commutative field.

:. $(N_i)_0 = N_i$, $(N_i)_d \neq \{0\}$,

 \therefore By above corollary, N_i is commutative field.

 \therefore N is a commutative ring with identity 2.

3. REFERENCES

1	Blackett D.V;	"Simple and semisimple near-rings ",Proc. Amer. Math. Soc. 4(1953),772-785.
2	Frohlich A;	"Distributively generated near-rings, (I.Ideal Theory) ', Proc. London Math. Soc. (3), 8(1958). 76-91.
3	Howard E.Bell;	"Near-rings in which each element is a power of itself", Bul. Austral.Math.Soc.Vol.2(1970),363-368.
4	James R.Clay	"The near-rings on groups of low order", Math Z. 104 (1968) ,364-371.

5	Ligh Steve ;	"On Boolean near-rings", Bull.Austral. Math. Soc. 1(1969), 375 - 379.		
6	Ligh Steve;	"On division near-rings", Cand.J.Math(to appear).		
7	Pierce R.S'	"Modules over commutative regular rings", Mem. Amer. math.Soc.70.Providence Rhode Island, 1967.		
8	Pilz.G;	"Near-rings, Theory and its Applications", North Holland 1983.		
9	Plasser;	"Subdirekte Darstellung Von Ringen und Fastringen Mit Boolschen Eigenschaften", Diplomarbeit, Univ, Linz, Austria,1971.		
10	Ratliff, Ernest F;	"Some results on p-near-rings and related near-rings", Ph.D., Dissertation, University of Oklahoma,1971.		

¹ Dr.D.Bala Ratnakar Visiting Professor, SPAV (Estd by MHRD Govt of India) Vijayawada, Andhra Pradesh, India. ² Dr.P.Vijaya Vani				

Visiting Professor, Dept of IBS Acharya Nagarajuna University, Guntur, Andhra Pradesh, India. ³Dr.B.Vijaya Kumar Head & Professor, Dept of Maths Andhar Christian College, Guntur, Andhra Pradesh, India. ⁴Prof.Dr.P.Koteswara Rao Professor of Mathematics, Dept of Commerce & Business Admin. Acharya Nagarajuna University, Guntur, Andhra Pradesh, India.