CONGRUENCE RELATION ON A*-ALGEBRAS

B. Vijaya Kumar¹, D.B.Ratnakar², P. Koteswara Rao³

Abstract: This paper presents theorems on congruence relation on A*- algebras.

Keywords: A^* -algebra, Sub- A^* -algebra, Homomorphism, Isomorphism and Congruence.

Definition 1: An algebra $(A, \wedge, *, (-)^{\sim}, (-)_{\pi}, 1)$ is an A^* -algebra if it satisfies:

$$\begin{array}{l} a_{\pi} \vee (a_{\pi})^{\sim} = 1, \ (a_{\pi})_{\pi} = a_{\pi} \ \text{where a} \vee b = (a^{\sim} \wedge b^{\sim})^{\sim} \\ a_{\pi} \vee b_{\pi} = b_{\pi} \vee a_{\pi} \\ (a_{\pi} \vee b_{\pi}) \vee c_{\pi} = a_{\pi} \vee (b_{\pi} \vee c_{\pi}) \\ (a_{\pi} \wedge b_{\pi}) \vee (a_{\pi} \wedge (b_{\pi})^{\sim}) = a_{\pi} \\ (a \wedge b)_{\pi} = a_{\pi} \wedge b_{\pi}, \ (a \wedge b)^{\#} = a^{\#} \vee b^{\#} \ \text{where} \\ a^{\#} = (a_{\pi} \vee a^{\sim}_{\pi})^{\sim} \\ a^{\sim}_{\pi} = (a_{\pi} \vee a^{\#})^{\sim}, \ a^{\sim\#} = a^{\#} \\ (a * b)_{\pi} = a_{\pi}, \ (a * b)^{\#} = (a_{\pi})^{\sim} \wedge (b^{\sim}_{\pi})^{\sim} \\ a = b \ \text{if and only if} \ a_{\pi} = b_{\pi}, \ a^{\#} = b^{\#}. \end{array}$$

We write 0 for 1^{\sim} , 2 for 0 * 1.

Remark: The motivation for the operation * is the "disjointifica-tion" of the familiar rectangular bands of semigroup theory which provide an equational way of the composing a set into a Cartesian product with two factors.

Example: $3=\{0, 1, 2\}$ with the operations defined below is an A^* - algebra.

Λ		1		V	0	1	2
0	0	0	2	0	0	1	2
1	0	1	2	1	1	1	2
2	2	0 1 2	2	2	2	1 2	2

Note: From Definition 1 (i) through (iv) and Huntington's Theorem B(A)= $\{a_{\pi} \mid a \in A\}$ is a Boolean algebra with Λ , V, $(-)^{\sim}$, 0 and $a \in B(A) \Rightarrow a_{\pi}=a$. Since 1, 0, $(a_{\pi})^{\sim} \in B(A)$, we have $1_{\pi}=1$, $0_{\pi}=0$, $(a_{\pi})^{\sim}_{\pi}=(a_{\pi})^{\sim}$ and $a_{\pi} \wedge a^{\#}=0$, $a * 0=a_{\pi}$.

Lemma 1: For any x, y, z in an A*- algebra

$$x^{\sim} = x$$

```
(x \wedge y)_{\pi}^{\sim} = (x^{\sim} \wedge y)_{\pi} \vee (x \wedge y^{\sim})_{\pi} \vee (x^{\sim} \wedge y^{\sim})_{\pi}
(x \lor y)_{\pi} = (x^{\sim} \land y)_{\pi} \lor (x \land y^{\sim})_{\pi} \lor (x \land y)_{\pi}
x \land (y \lor z) = (x \land y) \lor (x \land z).
```

Lemma 2: For any x,y in A

$$(x * y)_{\pi}^{\sim} = (x_{\pi})^{\sim} \wedge (y^{\sim})_{\pi}$$

 $x = x_{\pi} * (x^{\sim})_{\pi}^{\sim} = (x_{\pi}) * x^{\#}$

$$x = x_{\pi} * (x^{\sim})_{\pi} = (x_{\pi}) * x^{\dagger}$$

If x = e * f, where $e, f \in B(A)$, $e \wedge f = 0$, then $x_{\pi} = e$, $x^{\#} = f$.

Theorem 1: Every A*-algebra (A, \wedge , *, (-)_{π '} (-) $^{\sim}$, 1) satisfies the following conditions:

For x, y, z in A

 $x \land (y \land z) = (x \land y) \land z$

 $x \wedge y = y \wedge x$

 $x \wedge x = x$

 $1 \wedge x = x$

 $x^{\sim} = x$

 $x \land (y \lor z) = (x \land y) \lor (x \land z)$ where $x \lor y = (x^{\sim} \land y^{\sim})^{\sim}$

 $[(x_{\pi})^{\sim}]_{\pi} = (x_{\pi})^{\sim}$

 $(x \wedge y)_{\pi} = x_{\pi} \wedge y_{\pi}$

 $(x \wedge x^{\sim})_{\pi} = 0$ where $1^{\sim} = 0$

 $X_{\pi} \wedge (X_{\pi} \vee y_{\pi}) = X_{\pi}$

 $(x \wedge y)_{\pi}^{\sim} = (x \wedge y)_{\pi} \vee (x \wedge y)_{\pi} \vee (x \wedge y)_{\pi}$

 $(\mathbf{x}_{\pi})_{\pi} = \mathbf{x}_{\pi}$

 $(x * y)_{\pi} = x_{\pi}$

 $(x * y)_{\pi}^{\sim} = (x_{\pi})^{\sim} \wedge (y^{\sim})_{\pi}$ $x = x_{\pi} * (x_{\pi})^{\sim}$

E.G. Manes around 1989, in a rough draft of his paper entitled "The Equational Theory of Disjoint Alternatives", the algebra $(A, \Lambda, *, (-)_{\pi}, (-)^{\sim}, 1)$ satisfying Th.1(i) through (xvi) called as an ada, which however differs from the definition of an ada.

Theorem 2: An algebra $(A, \wedge, *, (-)^{\sim}, (-)_{\pi}, 1)$ satisfying axioms of the above theorem is an A*-algebra.

Definition 2: Let $(A, \Lambda, *, (-)^{\sim}, (-)_{\pi}, 1)$ be an A^* -algebra and $A_1 \subseteq A$, A_1 is called a sub A*-algebra of A if A₁ is closed under \wedge , *, $(-)^{\sim}$, $(-)_{\pi}$, 0, 1.

Definition 3: Let $(A_1, \wedge, \vee, (-)^{\sim}, (-)_{\pi}, *, 1)$ and

 $(A_2, \land, \lor, (-)^{\sim}, (-)_{\pi}, *, 1)$ be A*- algebras. A mapping $f: A_1 \rightarrow A_2$ is called an A*homomorphism if

(i)
$$f(a \wedge b) = f(a) \wedge f(b)$$

$$f(a * b)=f(a) * f(b)$$

(iii)
$$f(a_{\pi})=(f(a))_{\pi}$$

$$f(a^{\sim})=(f(a))^{\sim}$$

ISSN: 2278-8697

(v)
$$f(1) = 1$$
 (vi) $f(0) = 0$.

If in addition f is bijective, then f is called an A^* -isomorphism, and A_1 , A_2 are said to be isomorphic, denote in symbols $A_1 \cong A_2$.

Definition 4: A congruence relation \emptyset on an A*-algebra is an equivalence relation on A satisfying

(i)
$$a \emptyset b \Rightarrow a_{\pi} \emptyset b_{\pi}$$
, $a^{\#}\emptyset b^{\#}$, $a^{\sim}\emptyset b^{\sim}$

(ii
$$a \emptyset b, c \emptyset d \Rightarrow (a * c) \emptyset (b * d), (a \land c) \emptyset (b \land d).$$

Note: Definition 4 is equivalent to

(i)
$$a \emptyset b \Rightarrow a^{\sim} \emptyset b^{\sim}$$

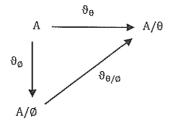
- (ii) $a \emptyset b, c \emptyset d \Rightarrow (a \land c) \emptyset (b \land d)$
- (iii) $a \emptyset b$, $c \emptyset d \Rightarrow (a * c) \emptyset (b * d)$.

Theorem 3: Let \emptyset be a congruence relation on an A*-algebra A. Then $A/\emptyset = \{\emptyset(a) \mid a \in A\}$ is an A*- algebra where operations are defined as follows:

(i)
$$\emptyset(a) \land \emptyset(b) = \emptyset(a \land b)$$

- (ii) $\emptyset(a)^{\sim} = \emptyset(a^{\sim})$
- (iii) $\emptyset(a)_{\pi} = \emptyset(a_{\pi})$
- (iv) \emptyset (a) * \emptyset (b) = \emptyset (a * b).

Theorem 4: Suppose A is an A*-algebra and \emptyset is a congruence relation on A. Suppose θ is another congruence on A. Define $\vartheta_{\theta/\emptyset}: A/\emptyset \to A/\theta$ as $\overline{a}_{\emptyset} \mapsto \overline{a}_{\theta}$. Then $\vartheta_{\theta/\emptyset}$ is a map if and only if $\emptyset \subseteq \theta$. So, in this case $\vartheta_{\theta/\emptyset}: \overline{a}_{\emptyset} \mapsto \overline{a}_{\theta}$ is a unique map such that



 $\vartheta_{\theta/\emptyset}\vartheta_{\emptyset}=\vartheta_{\theta}$

is commutative.

Proof: Claim: $\theta_{\theta/\emptyset}$ is a map $\Leftrightarrow \emptyset \subseteq \theta$.

Suppose $\vartheta_{\theta/\emptyset}: A/\emptyset \to A/\theta$ by $\overline{a}_{\emptyset} \mapsto \overline{a}_{\theta}$ is a map.

(a, b)
$$\in \emptyset \Rightarrow \overline{a}_{\emptyset} = \overline{b}_{\emptyset} \Rightarrow \overline{a}_{\emptyset} = \overline{b}_{\theta} \text{ (since } \theta_{\theta/\emptyset} \text{ is a map)}$$

 $\Rightarrow (a, b) \in \theta.$

ISSN: 2278-8697

Therefore $\emptyset \subset \theta$.

Conversely suppose that $\emptyset \subset \theta$.

<u>Claim</u>: $\vartheta_{\theta/\emptyset}: A/\emptyset \to A/\theta$ by $\overline{a}_{\emptyset} \mapsto \overline{a}_{\theta}$ is a map. Suppose $\overline{a}_{\emptyset} = \overline{b}_{\emptyset} \Rightarrow (a, b) \in \emptyset \Rightarrow (a, b) \in \theta \ (\because \emptyset \subset \theta) \Rightarrow \overline{a}_{\theta} = \overline{b}_{\theta}$. Therefore $\vartheta_{\theta/\emptyset}$ is well defined. Therefore $\vartheta_{\theta/\emptyset}$ is a map. The diagram is commutative:

Let $a \in A$.

$$\begin{split} (\vartheta_{\theta/\emptyset}\vartheta_{\emptyset})(a) &= \vartheta_{\theta/\emptyset}(\vartheta_{\emptyset}(a)) = \vartheta_{\theta/\emptyset}(\overline{a}_{\emptyset}) = \overline{a}_{\theta} = \vartheta_{\theta}(a) \\ \text{Therefore } \vartheta_{\theta/\emptyset}\vartheta_{\emptyset} = \vartheta_{\theta}. \end{split}$$

 $\vartheta_{\theta/\emptyset}$ is unique:

Let
$$\vartheta: A/\emptyset \to A/\emptyset$$
 be a map such that $\vartheta\vartheta_{\emptyset} = \vartheta_{\theta}$. Let $\overline{a}_{\emptyset} \in A/\emptyset$. $\vartheta_{\theta/\emptyset}(\overline{a}_{\emptyset}) = \vartheta_{\theta/\emptyset}(\vartheta_{\emptyset}(a)) = (\vartheta_{\theta/\emptyset}\vartheta_{\emptyset})(a) = \vartheta_{\theta}(a) = (\vartheta\vartheta_{\emptyset})(a) = \vartheta(\vartheta_{\emptyset}(a)) = \vartheta(\overline{a}_{\emptyset})$.

Therefore $\theta_{\theta/\emptyset} = \theta$.

Therefore $\theta_{\theta/\emptyset}$ is unique.

<u>Claim</u>: $\vartheta_{\theta/\emptyset}$ is a homomorphism.

Let
$$\bar{a}_{\emptyset}$$
, $\bar{b}_{\emptyset} \in A/\emptyset$.

$$\begin{split} \vartheta_{\theta/\emptyset}(\overline{a}_{\emptyset} \ \wedge \overline{b}_{\emptyset}) &= \vartheta_{\theta/\emptyset}((\overline{a \wedge b})_{\emptyset}) = (\overline{a \wedge b})_{\theta} = \overline{a}_{\theta} \wedge \overline{b}_{\theta} \\ &= \vartheta_{\theta/\emptyset}(a) \wedge \vartheta_{\theta/\emptyset}(b) \\ \vartheta_{\theta/\emptyset}(\overline{a}_{\emptyset} \ * \overline{b}_{\emptyset}) &= \vartheta_{\theta/\emptyset}((\overline{a * b})_{\emptyset}) = (\overline{a * b})_{\theta} = \overline{a}_{\theta} * \overline{b}_{\theta} \end{split}$$

$$\theta_{\theta/\emptyset}(\bar{a}_{\emptyset} + \bar{b}_{\emptyset}) = \theta_{\theta/\emptyset}(\bar{a} + \bar{b}_{\emptyset}) = (\bar{a} + \bar{b}_{\emptyset} + \bar{b}_{\emptyset}) = \theta_{\theta/\emptyset}(\bar{a}) * \theta_{\theta/\emptyset}(\bar{b})$$

$$\theta_{\theta/\emptyset}(\bar{a}_{\emptyset\pi}) = \theta_{\theta/\emptyset}(\bar{a}_{\pi\emptyset}) = \bar{a}_{\pi\theta} = \bar{a}_{\theta\pi} = \theta_{\theta/\emptyset}(\bar{a}_{\emptyset})_{\pi}$$

$$\begin{array}{l} \vartheta_{\theta/\emptyset}(\overline{a}_{\emptyset\pi}) = \vartheta_{\theta/\emptyset}(\overline{a}_{\pi\emptyset}) = \overline{a}_{\pi\theta} = \overline{a}_{\theta\pi} = \vartheta_{\theta/\emptyset}(\overline{a}_{\emptyset})_{\pi} \\ \vartheta_{\theta/\emptyset}(\overline{a}_{\emptyset}^{\sim}) = \vartheta_{\theta/\emptyset}(\overline{a}_{\emptyset}^{\sim}) = \overline{a}_{\theta}^{\sim} = \overline{a}_{\theta}^{\sim} = \vartheta_{\theta/\emptyset}(\overline{a}_{\emptyset})^{\sim} \\ \text{and } \vartheta_{\theta/\emptyset}(\overline{0}_{\emptyset}) = \overline{0}_{\theta} , \vartheta_{\theta/\emptyset}(\overline{1}_{\emptyset}) = \overline{1}_{\theta} , \vartheta_{\theta/\emptyset}(\overline{2}_{\emptyset}) = \overline{2}_{\theta}. \end{array}$$

Therefore $\vartheta_{0/\Box}$ is a homomorphism.

Clearly $\theta_{\theta/\Box}$ is surjective.

Claim: $\vartheta_{\theta/\emptyset}$ is injective $\Leftrightarrow \theta = \emptyset$. Suppose $\vartheta_{\theta/\emptyset}$ is an injective.

Claim: $\theta = \emptyset$.

Clearly $\emptyset \subset \theta$.

$$\begin{array}{l} (a, b) \in \theta \Rightarrow \overline{a}_{\theta} = \overline{b}_{\theta} \Rightarrow \vartheta_{\theta/\emptyset}(\overline{a}_{\emptyset}) = \vartheta_{\theta/\emptyset}(\overline{b}_{\emptyset}) \\ \Rightarrow \overline{a}_{\emptyset} = \overline{b}_{\emptyset} \text{ (since } \vartheta_{\theta/\emptyset} \text{ is an injective)} \\ \Rightarrow (a, b) \in \emptyset. \end{array}$$

Therefore $\theta \subset \emptyset$.

Therefore $\theta = \emptyset$.

Conversely suppose $\theta = \emptyset$.

Claim: $\theta_{\theta/\emptyset}$ is an injective.

Suppose
$$\vartheta_{\theta/\emptyset}(\overline{a}_{\emptyset}) = \vartheta_{\theta/\emptyset}(\overline{b}_{\emptyset}) \Rightarrow \overline{a}_{\theta} = \overline{b}_{\theta} \Rightarrow (a, b) \in \theta$$

 $\Rightarrow (a, b) \in \emptyset \text{ (since } \theta = \emptyset)$
 $\Rightarrow \overline{a}_{\emptyset} = \overline{b}_{\emptyset}.$

Therefore $\vartheta_{\theta/\Box}$ is injective.

Note: $\theta/\emptyset = \{ \bar{a}_{\emptyset} \in A/\emptyset \mid \bar{a}_{\theta} = \bar{0}_{\theta} \}$. This is also called kernel of $\vartheta_{\theta/\emptyset}$.

Note: Define $\theta/\emptyset = \{(\overline{a}_{\emptyset}, \overline{b}_{\emptyset}) | \overline{a}_{\emptyset}, \overline{b}_{\emptyset} \in A/\emptyset \text{ and } \overline{a}_{\theta} = \overline{b}_{\theta}\}. \theta/\emptyset \text{ is also called kernel of } \theta_{\theta/\emptyset}.$

Theorem 5: θ/\emptyset is a congruence relation on A/\emptyset .

Proof: $(\bar{a}_{\emptyset}, \bar{b}_{\emptyset}) \in \theta/\emptyset \Leftrightarrow \bar{a}_{\theta} = \bar{b}_{\theta}$. Clearly θ/\emptyset is an equivalence relation.

Suppose
$$(\overline{a}_{\emptyset}, \overline{b}_{\emptyset}) \in \theta/\emptyset$$
, $(\overline{c}_{\emptyset}, \overline{d}_{\emptyset}) \in \theta/\emptyset$.

$$\Rightarrow \overline{a}_{\theta} = \overline{b}_{\theta}, \overline{c}_{\theta} = \overline{d}_{\theta}$$

$$\Rightarrow a \theta b, c \theta d$$

$$\Rightarrow (a \wedge c) \theta(b \wedge d)$$

$$\Rightarrow (\overline{a} \wedge \overline{c})_{\theta} = (\overline{b} \wedge \overline{d})_{\theta}$$

$$\Rightarrow ((\overline{a} \wedge \overline{c})_{\emptyset}, (\overline{b} \wedge \overline{d})_{\emptyset}) \in \theta/\emptyset$$

$$\Rightarrow (\overline{a}_{\emptyset} \wedge \overline{c}_{\emptyset}, \overline{b}_{\emptyset} \wedge \overline{d}_{\emptyset}) \in \theta/\emptyset.$$

Suppose
$$(\overline{a}_{\emptyset}, \overline{b}_{\emptyset}) \in \theta/\emptyset$$
, $(\overline{c}_{\emptyset}, \overline{d}_{\emptyset}) \in \theta/\emptyset$.

$$\Rightarrow \overline{a}_{\theta} = \overline{b}_{\theta}, \overline{c}_{\theta} = \overline{d}_{\theta} \Rightarrow a \theta b, c \theta d$$

$$\Rightarrow (a * c) \theta(b * d) \Rightarrow (\overline{a * c})_{\theta} = (\overline{b * d})_{\theta}$$

$$\Rightarrow ((\overline{a * c})_{\emptyset}, (\overline{b * d})_{\emptyset}) \in \theta/\emptyset$$

$$\Rightarrow (\overline{a}_{\emptyset} * \overline{c}_{\emptyset}, \overline{b}_{\emptyset} * \overline{d}_{\emptyset}) \in \theta/\emptyset.$$

Suppose
$$(\overline{a}_{\emptyset}, \overline{b}_{\emptyset}) \in \theta/\emptyset \Rightarrow \overline{a}_{\theta} = \overline{b}_{\theta} \Rightarrow \overline{a}_{\theta}^{\sim} = \overline{b}_{\theta}^{\sim}, \overline{a}_{\theta_{\pi}} = \overline{b}_{\theta_{\pi}}$$

$$\Rightarrow \overline{a}_{\theta}^{\sim} = \overline{b}_{\theta}^{\sim}, \overline{a}_{\pi_{\theta}} = \overline{b}_{\pi_{\theta}}$$

$$\Rightarrow (\overline{a}_{\emptyset}^{\sim}, \overline{b}_{\emptyset}^{\sim}), (\overline{a}_{\pi_{\emptyset}}, \overline{b}_{\pi_{\emptyset}}) \in \theta/\emptyset$$

$$\Rightarrow (\overline{a}_{\emptyset}^{\sim}, \overline{b}_{\emptyset}^{\sim}), (\overline{a}_{\theta\pi}, \overline{b}_{\theta\pi}) \in \theta/\emptyset.$$

Therefore θ/\emptyset is a congruence relation on A/\emptyset .

Theorem 6: Suppose θ_1 , θ_2 are two congruences on an A*-algebra A such that $\theta_1 \supset \emptyset$, $\theta_2 \supset \emptyset$. Then $\theta_1 \supset \theta_2$ if and only if $\theta_1/\emptyset \supset \theta_2/\emptyset$. In particular, $\theta_1/\emptyset =$

 θ_2/\emptyset implies $\theta_1 = \theta_2$.

Proof: Suppose $\theta_1 \supset \theta_2$.

Therefore $\theta_1/\emptyset \supset \theta_2/\emptyset$.

Conversely suppose $\theta_1/\emptyset \supset \theta_2/\emptyset$.

Claim:
$$\theta_1 \supset \theta_2$$
.

(a, b)
$$\in \theta_2 \Rightarrow \overline{a}_{\theta_2} = \overline{b}_{\theta_2} \Rightarrow \overline{a}_{\theta_1} = \overline{b}_{\theta_1} \text{ (since } \theta_1/\emptyset \supset \theta_2/\emptyset)$$

 $\Rightarrow (a, b) \in \theta_1.$

Therefore $\theta_1 \supset \theta_2$.

Therefore $\theta_1 \supset \theta_2 \Leftrightarrow \theta_1/\emptyset \supset \theta_2/\emptyset$.

Clearly, $\theta_1/\emptyset = \theta_2/\emptyset \Leftrightarrow \theta_1 = \theta_2$.

Theorem 7: Any congruence $\bar{\theta}$ on A/ \emptyset has the form θ/\emptyset , where θ is a congruence relation on the A*-algebra A such that $\theta \supset \emptyset$.

Proof: Suppose $\bar{\theta}$ is a congruence on A/\emptyset . Define $\theta = \{(a, b) \mid a, b \in A, (\bar{a}_\emptyset, \bar{b}_\emptyset) \in \bar{\theta}\}.$

Claim: θ is a congruence on A.

Clearly θ is an equivalence relation.

Suppose (a, b), (c, d)
$$\in \theta \Rightarrow (\overline{a}_{\emptyset}, \overline{b}_{\emptyset}), (\overline{c}_{\emptyset}, \overline{d}_{\emptyset}) \in \overline{\theta}$$

 $\Rightarrow (\overline{a}_{\emptyset} \wedge \overline{c}_{\emptyset}, \overline{b}_{\emptyset} \wedge \overline{d}_{\emptyset}) \in \overline{\theta}(: \overline{\theta} \text{ is a congruence})$
 $\Rightarrow ((\overline{a} \wedge \overline{c})_{\emptyset}, (\overline{b} \wedge \overline{d})_{\emptyset}) \in \overline{\theta}$
 $\Rightarrow (a \wedge c, b \wedge d) \in \theta.$

Suppose (a, b), (c, d)
$$\in \theta \Rightarrow (\overline{a}_{\emptyset}, \overline{b}_{\emptyset}), (\overline{c}_{\emptyset}, \overline{d}_{\emptyset}) \in \overline{\theta}$$

 $\Rightarrow (\overline{a}_{\emptyset} * \overline{c}_{\emptyset}, \overline{b}_{\emptyset} * \overline{d}_{\emptyset}) \in \overline{\theta} (\because \overline{\theta} \text{ is congruence})$
 $\Rightarrow ((\overline{a} * \overline{c})_{\emptyset}, (\overline{b} * \overline{d})_{\emptyset}) \in \overline{\theta}$
 $\Rightarrow (a * c, b * d) \in \theta.$

Suppose (a, b)
$$\in \theta \Rightarrow (\overline{a}_{\phi}, \overline{b}_{\phi}) \in \overline{\theta}$$

 $\Rightarrow (\overline{a}_{\phi}^{-}, \overline{b}_{\phi}^{-}) \in \overline{\theta} \ (\because \overline{\theta} \text{ is a congruence})$
 $\Rightarrow (\overline{a}_{\phi}^{-}, \overline{b}_{\phi}^{-}) \in \overline{\theta}$
 $\Rightarrow (a^{-}, \underline{b}^{-}) \in \underline{\theta}$.

Suppose
$$(a, b) \in \theta \Rightarrow (\overline{a}_{\emptyset}, \overline{b}_{\emptyset}) \in \overline{\theta}$$

 $\Rightarrow (\overline{a}_{\emptyset\pi}, \overline{b}_{\emptyset\pi}) \in \overline{\theta} \text{ (since } \overline{\theta} \text{ is a congruence)}$
 $\Rightarrow (\overline{a}_{\pi\emptyset}, \overline{b}_{\pi\emptyset}) \in \overline{\theta}$
 $\Rightarrow (a_{\pi\nu}b_{\pi}) \in \theta.$

ISSN: 2278-8697

Therefore θ is a congruence relation on the A*-algebra A. Claim: $\bar{\theta} = \theta/\emptyset$. $(\bar{a}_{\emptyset}, \bar{b}_{\emptyset}) \in \bar{\theta} \Leftrightarrow (a, b) \in \theta \Leftrightarrow \bar{a}_{\theta} = \bar{b}_{\theta} \Leftrightarrow (\bar{a}_{\emptyset}, \bar{b}_{\emptyset}) \in \theta/\emptyset$.

Therefore $\bar{\theta} = \theta/\emptyset$.

REFERENCES

- Koteswara Rao , P: A* algebras and If Then Else Structures, Ph.D.Thesis, Nagarjuna University, October 1994.
- Manes E.G: Adas and the Equational Theory of If-Then-Else, Algebra Universalis, Vol. 30(1993), 373-394.
- Manes, E. G: The Equational Theory of Disjoint Alternatives, Personal communication to N. V. Subrahmanyam, 1989.
- 4. Serge Lang Addison: Algebra, Wesley Publishing Company, 1977, 146.
- Vijaya Kumar, B: A*-algebras and 3-Rings; Ph.D. Thesis, Acharya Nagarjuna University, 2009, A.P., India.

水水水水水水水

Corresponding Author:

¹Dr. B. Vijaya Kumar, Head, Dept. of Mathematics, Andhra Christian College, GUNTUR -522001, Andhra Pradesh, India. bussavijay@gmail.com ²Dr. D.B. Ratnakar, School of Planning and Architecture Vijayawada. Vijayawada, Krishna Dt Andhra Pradesh ³Prof. P. Koteswara Rao, Professor of Mathematics, Dept. of Commerce and Business Admn., Acharya Nagarjuna University, Nagarjuna Nagar-522510, Andhra Pradesh, India.