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Abstract: Near-rings are algebraic systems with binary operations of addition and
muliiplication satisfying all the ring axioms except possibly one of the distributive laws
and commutativity of addition. Semi rings are algebraic systems which are closed and
associative under two operations, usual addition, multiplication, satisfying both the
distributive laws. In this paper we consider an algebraic system semi near-ring, which is a
generalization of both a semi ring and a near-ring. We have defined s-l-product of two

Suzzy s-k-ideals and proved that the s-k-product of two fuzzy s-k-ideals is contained in their
intersection.
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1. INTRODUCTION

A semi near-ring S is an algebraic system with two binary operations: usual addition
and usual multiplication such that § forms a semi group with respect to both the
operations and satisfies the right distributive law. A natural example of a semi near-
ring is obtained by considering the operations usual addition and composition of
mappings on a set of all mappings of an additive semi group § into itself.

Definition 1.1. A subset I of a Semi near-ring S is aright (respectively, left) s-
ideal if

M x+yel (i) xrel (right s-ideal), (rx e I (left s-ideal)) for all x, yelandr
€ S.

Definition 1.2. A non-empty fuzzy subset L ( that is, p(x) #0 for some x € 8) of
semi near-ring S is called a fuzzy s-ideal if it satisfies

(1) pMx +y) 2 min {(ux), u(y)}
(i) pixy) 2 max {p(x), piy)}.

Definition 1.3. A left (or right) s-ideal 1 of a semi near-ring S is called a left (or
right) s-k-ideal of S if ye [andxe §, x+ye I implies that x € L.

Definition 1.4. A fuzzy s-ideal p of a semi near-ring S is called a fuzzy s-k-
idealof S forallx,y,z€ S,
X +y=1z impliesthat m(x) = min {p(y), 1(z)}.

2. PRODUCT OF S-K-IDEALS

Definition 2.1. Let p and o be two fuzzy subsets of a semi near-ring S.
Then the s-k-product of p and o denotedby u ¢ ¢ is defined as,
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Sup { min {W(a;), o(by)}
(I—"OG)(X}; x+a1b;=a2b2‘ i=1,2
0, elsewhere

Proposition 2.2. Let pandc be two fuzzy s-k-ideals
of a semi near-ring S. Then 1 M & is also a fuzzy s-k- ideal
of 8. Also péogpuno.

Proof : First, we prove that L M o is a fuzzy s-k-ideal of 5.

(LN o)X +y) = min {x +y), o(x +¥)}
(by the definition of intersection)
= min {min{pu(x), p(y)}, min {o(x), 6(y)}}
(since y and © are fuzzy ideals)
= min {min{p(x), o(x)}, min {p(y), 6(y)}}
=min {(L N 6} (x), (kN O)y)} (bythe
definition of intersection)

(LM o) (xy) = min {{{xy), o(xy)}
(by the definition of intersection)
= min {max {}(x), u(y)}, max {o(x), 6(y )} }
(since p and o are fuzzy ideals)
= max {min{{p(x), 6(x), min {p(y), o(y}}}
{by the definition of intersection)
=max {(lLt N o)), (LN o)y}

Therefore , LM o is a fuzzy s-ideal of S.
Next, we show that |l oisafuzzy s-k-ideal of S.
Suppose (LN G) X+ y)= (L o) (0) and
(rno)(y)=Eno)0)
To show (L Q) (X} = (o))
Now (L o) (x) = min {L(x), o(x)}
2 min {min{u(y), k(x + y)}.min{o(y),c(x + )}
(since p and o are fuzzy s-k-ideals)
= min {i(y), (X + ¥), 6(y), o(x+y})
= min {min {}i(y),0(y)}.min {i(x + Y).0(x+ ¥)}
=min {(x N }0), (L o)0}}
(by supposition)
=(no) @
Therefore, P o isa fuzzy s-k-ideal of S.
Now we will showthat péocuno.
H{poéo)x)=0forallxe S.
Then clearly, pndccpumo.
On the other hand, take a;, by, a5, b, € S such that
X+ a4 b] = Q2 b2
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Now w(x) = min {p(a;b,), i{asba)}
(since u is a fuzzy s-k-ideal)
2 min {l(a;), wa)}
(since p is a fuzzy s-ideal)
Similarly, 6(x) Z min {G(b;), a{b))}.
Now
(L0 6) (x) = sup {min {p(a;), p(az), a(b)), o(by)}
X+ a b; = a3 b;:_
= min {(x), o(x)}
= (LM a)(x).
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