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Abstract: In this paper an attempt has been made to discuss the combined influence of radiation and 
dissipation on the convective heat and mass transfer flow of a viscous fluid through a porous medium in a 
rectangular cavity using Darcy model with non-linear density temperature variation. Making use of the 
incompressibility the governing non-linear coupled equations for the momentum, energy and diffusion are 
derived in terms of the non-dimensional stream function, temperature and concentration. The Galerkin finite 
element analysis with linear triangular elements is used to obtain the Global stiffness matrices for the values of 
stream function, temperature and concentration. These coupled matrices are solved using iterative procedure 
and expressions for the stream function, temperature and concentration are obtained as a linear combinations 
of the shape functions. The behaviour of temperature, concentration, Nusselt number and Sherwood number 
are discussed computationally for different values of the governing Parameters  N1 and Ec.  
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Introduction: Convective heat transfer in a 
Rectangular porous duct whose vertical walls are 
maintained at two different temperatures and 
horizontal walls insulated, is a problem which has 
received attention by many investigators. The 
investigation of heat transfer in enclosures containing 
porous media began with the experimental work of 
Verschoor and Greebler [10].. Teomann Ay Han et. 
al., [8] have considered heat transfer and flow 
structure in a rectangular channel with wing-type 
Vortex Generator. Chitti Babu et. al., [3] has discussed 
convective flow in a porous rectangular duct with 
differentially heated side wall using Brinkman model. 
 When heat and mass transfer occur 
simultaneously, it leads to complex fluid motion 
called double-diffusive convection. Double-diffusion 
occurs in a wide range of scientific fields such as 
oceanography, astrophysics, geology, biology and 
chemical processes. Ostrich [4] and Viskanta et. al., 
[11] reported complete reviews on the subject. Bejan 
[2] reported fundamental study of scale analysis 
relative to heat and mass transfer with in cavities 
submitted to horizontal combined and pure 
temperature and concentration gradients. unsteady 
double-diffusive convection in a rectangular 
enclosure with aiding and opposing temperature and 
concentration gradients that were in good agreement 
with reported experimental results. 
 Literature suggests that the effect of viscous 
dissipation on heat transfer as been studied for 
different geometries. The study showed that the 
viscous dissipation effect on natural convection in a 
porous cavity and found that the heat transfer rate at 
hot surface decreases with increase of viscous 
dissipation parameter. Thermal radiation plays a 

significant role in the overall surface heat transfer 
where convective heat transfer is small.  Recently 
Padmavathi [5] has  analyzed the conductive heat 
transfer through a porous medium in a rectangular 
cavity with heat sources and dissipation under varied 
conditions.  By using Galerkine finite element 
analysis, the governing equations are solved. Reddaih 
et. al., [6] have analyzed the effect of viscous 
dissipation on convective heat and mass transfer flow 
of a viscous fluid in a duct of rectangular cross 
section by employing Galerkin finite element 
analysis. Recently Shanti [7] has investigated double 
diffusive flow in a rectangular cavity with linear 
density temperature variation. 
 In this paper an attempt has been made to 
discuss the combined influence of radiation and 
dissipation on the convective heat and mass transfer 
flow of a viscous fluid through a porous medium in a 
rectangular cavity using Darcy model with non-linear 
density temperature variation. Making use of the 
incompressibility the governing non-linear coupled 
equations for the momentum, energy and diffusion 
are derived in terms of the non-dimensional stream 
function, temperature and concentration. The 
Galerkin finite element analysis with linear triangular 
elements is used to obtain the Global stiffness 
matrices for the values of stream function, 
temperature and concentration. These coupled 
matrices are solved using iterative procedure and 
expressions for the stream function, temperature and 
concentration are obtained as a linear combinations 
of the shape functions. The behaviour of temperature, 
concentration, Nusselt number and Sherwood 
number are discussed computationally for different 
values of the governing Parameters  N1 and Ec.  
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Fig. I 

SCHEMATIC DIAGRAM OF THE FLOW MODEL 
 
 
2. Formulation: 
We consider the mixed convective heat and mass 
transfer flow of a viscous incompressible fluid in a 
saturated porous medium confined in the rectangular 
duct (Fig. 1) whose base length is a and height b. The 
heat flux on the base and top walls is maintained 
constant.  
We assume that 
i) The convective fluid and the porous 
medium are everywhere in local thermodynamic 
equilibrium. 
ii) There is no phase change of the fluid in 
the medium. 
iii) The properties of the fluid and of the 
porous medium are homogeneous and isotrophic. 
iv) The porous medium is assumed to be 
closely packed so that Darcy’s momentum law is 
adequate in the porous medium. 
v) The Boussinesq approximation is 
applicable. 
Under these assumption the governing equations are 
given by 
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where u′ and v′ are Darcy velocities along θ(x, y) 
direction. T′, C,p′ and g′ are the temperature, 
Concentration, pressure and acceleration due to 
gravity, Tc ,Cc and Th ,Ch are the temperature and 
Concentration on the cold and warm side walls 

respectively. ρ′, µ, ν, and β are the density, 
coefficients of viscosity, kinematic viscosity and 
thermal expansion of he fluid, k is the permeability of 
the porous medium, K1 is the thermal conductivity, Cp 
is the specific heat at constant pressure, β* is the 
volume coefficient of expansion with mass fraction 
concentration and qr is the radiative heat flux..  
The boundary conditions are 

 u′ = v′ = 0    
on the boundary of the duct 

 T′ = Tc ,C=Cc    
on the side wall to the left 

 T′ = Th ,C=Ch    
on the side wall to the right   (2.7) 
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on the top ( y = 0) and bottom      

            0== vu                                    
walls(y = 0)which are insulated. 
We now introduce the following non-dimensional 
variables 

 x′ =  ax; ; y′ = by  ;  
c = b/a 

 u′ = (ν/a) u ; v′ = (ν/a)v ;
 p′ = (ν2ρ/a2)p 

x 

y 
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 T′ = T0 + θ (Th – Tc) C′ = C0 + φ (Th – Tc)
    (2.8). 
The governing equations in the non-dimensional 
form are 
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In view of the equation of continuity we introduce 
the stream function ψ as 
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Eliminating p from the equation (2.9) and (2.10) and 
making use of (2.13) the equations in terms of ψ and θ 
are 
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The  boundary conditions are  
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3.    Finite Element Analysis and Solution of the 
Problem: 
The region is divided into a finite number of three 
node triangular elements, in each of which the 
element equation is derived using Galerkin weighted 
residual method. In each element fi the approximate 
solution for an unknown f in the variational 
formulation is expressed as a linear combination of 

shape function. ( ) ,3,2,1=kN i

k  which are linear 

polynomials in x and y.  

Let ψi , θi  and φi  be the approximate values of ψ ,θ  
and φ in an element θi. 

 
iiiiiii NNN 332211           ψψψψ ++=  

    (3.1a) 

 
iiiiiii NNN 332211           θθθθ ++=  

    (3.1b) 

 
iiiiii NNN 332211          φφφφ ++= = 

   (3.1c) 

Substituting the approximate value ψi , θi   and φi  for 
ψ ,θ  and φ respectively in (2.13),  
 Repeating the above process with each of s 
elements, we obtain sets of such matrix equations. 
Introducing the global coordinates and global values 

for 
i

pθ and making use of inter element continuity 

and boundary conditions relevant to the problem the 
above stiffness matrices are assembled to obtain a 
global matrix equation. This global matrix is r x r 
square matrix if there are r distinct global nodes in 
the domain of flow considered. 

Similarly substituting ψi ,θi and φi in (2.12) and 
defining the error 
   
and following the Galerkin method we obtain 
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   (3. 2) 
In the problem under consideration, for 
computational purpose, we choose uniform mesh of 
10 triangular element (Fig. ii). The domain has 
vertices whose global coordinates are (0,0), (1,0) and 
(1,c) in the non-dimensional form. Let              e1, 
e2…..e10 be the ten elements and let θ1, θ2, …..θ10 be the 

global values of θ and ψ1, ψ2,……ψ10 be the global 
values of ψ at the ten global nodes of the domain 
(Fig. ii). 
The 3x3 matrix equations are assembled using 
connectivity conditions to obtain a 8x8 matrix 

equations for the global nodes ψp,θp and φp.The 
global matrix equations are coupled and are solved 
under the following iterative procedures The three 
equations are thus solved under iteration process 
until two consecutive iterations differ by a 
preassigned percentage. 
The domain consists three horizontal levels and the 
solution for Ψ & θ at each level may be expressed in 
terms of the nodal values as follows, 
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and H represents the Heaviside function. 
The expressions for θ are 
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The dimensionless Nusselt numbers(Nu) and 
Sherwood Numbers (Sh) on the non-insulated 
boundary walls of the rectangular duct are calculated 
using the formula 

Nu = (
x∂
∂θ

) x=1 and   Sh = (
x∂
∂φ

) x=1 

Nusselt Number on the side wall x=1in different 
regions are 

 Nu1=2-4θ3         ( )3/0 hy ≤≤  

 Nu2=2-4θ5        ( )3/23/ hyh ≤≤  

 Nu3=2-4θ7         ( )3/2 hyh ≤≤  

Sherwood  Number on the side wall x=1in different 
regions are 

 Sh1=2-4φ3         ( )3/0 hy ≤≤  

 Sh2=2-4φ5         ( )3/23/ hyh ≤≤  

 Sh3=2-4φ7         ( )3/2 hyh ≤≤  

For γ = 0 the results are in good agreement with 
Shanthi (7). 
4.  Discussion 0f The Numerical Results: 
 In this analysis we investigate the effect of 
non-linear density temperature variation on double 
diffusive convective heat transfer flow of the viscous 
fluid through a porous medium in a rectangular 
cavity in the presence of constant heat source with 
radiation. The equations governing the flow heat and 
mass transfer are solved by employing by a finite 
element Galerkin method with three noded 
triangular element. 
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The temperature distribution (θ) is shown in figures 1 
–7 for different values of radiation parameter N1 ,  and 
Eckert number Ec at different horizontal and vertical 
levels The influence of radiative heat flux on θ is 
shown in figures 1-4 .An increase in N1 ≤ 0.05 results 
in an enhancement in actual temperature and 
reduces with higher N1 ≥ 0.07 at all horizontal levels . 
While at vertical level x = 1/3 the actual temperature 
enhances with N1 ≤ 0.03 and reduces at N1 = 0.05 and 
again enhances with N1 = 0.07 and at the higher 
vertical level  x = 2/3 the actual temperature enhances 
with N1 ≤ 0.05 and depreciates with higher N1 ≥ 0.07 
(fig.4). The effect of viscous dissipation on θ is shown 
in figures 5-7. It is observed that the actual 
temperature enhances at y = h/3 level and depreciates 
at y = 2h/3 level. While it enhances at x = 1/3 level and 
depreciates at x = 2/3 level . The non-dimensional 

concentration C is shown in figures 8-12 for a 
different parametric values at horizontal and vertical 
levels . It is found that at both the horizontal levels 
the actual concentration enhances with increase in N1 
≤ 0.05 and depreciates with higher N1 ≥ 0.07 (figures 8 
& 9). While at the vertical levels the actual 
concentration enhances with increase in N1 ≤ 0.05 
and with higher N1 ≥ 0.07 the actual concentration 
enhances at X = 1/3 level and depreciates at X = 2/3 
level (figures 10 & 11). 
 
Figure 12 represents the variation  of C with Eckert 
number Ec.  It is found that the actual concentration 
experiences a depreciation with increase in Ec with 
all levels . Thus the greater the dissipative heat 
smaller the actual concentration in the flow region . 

 
Table – 1 
Nusselt Number (Nu) at x=1 
 

 I II III IV V VI VII 
Nu1 2.12293 -11.7616 -15.3216 -4.41056 0.67912 0.651136 0.623036 
Nu2 2.06762 -5.40572 -18.8721 0.74653 0.750204 0.72464 0.699704 
Nu3 2.01231 0.95015 12.5776 5.90362 0.820696 0.79815 0.77637 
N1 0.01 0.03 0.05 0.07 0.01 0.01 0.01 
Ec 0.001 0.001 0.001 0.001 0.003 0.005 0.007 

 
Table – 2 
Sherwood number (Sh) at x=1 
 

 I II III IV V VI VII 
Sh1 11.481 6.22932 12.6391 13.027152 9.73188 9.81812 9.91372 
Sh2 4.16126 1.76094 3.241536 19.4076 11.92632 12.04908 12.18536 
Sh3 -3.1584 -2.7074 -25.156 38.84236 14.12072 14.28008 14.457 
N1 0.01 0.03 0.05 0.07 0.01 0.01 0.01 
Ec 0.001 0.001 0.001 0.001 0.003 0.005 0.007 

 
The Nusselt number ( Nu ) at X = 1 is shown in tables 
1 at different levels.  The variation of Nu with 
radiation parameter N1 and Eckert number Ec is 

exhibited in               table-1 . It is observed that the 
rate of heat transfer enhances with increase in the 
radiation parameter N1 ≤ 0.05 and depreciates with N1  
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  Fig. 11 : Variation of C with N1 at 
3

2
x =  level
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≥ 0.07 at all three quadrants where an increase in Ec 
reduces Nu at all three quadrants .  
                 The rate of mass transfer  (Sh) at X = 1 at all 
different levels is shown in Table 2 for different values 
of N1 and Ec The variation of Sh with radiation 
parameter N1 shows that the rate of mass transfer at 

all the quadrants depreciates with N1 ≤ 0.03 and 
enhances with higher N1  ≥ 0.03. Also Sh reduces in 
the first quadrant with Ec ≤ 0.03 and enhances with 
Ec ≥ 0.05 while at the second and upper quadrants Sh 
experiences an enhancement with increase in Ec 
(table 2).    
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