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Abstract : Let G be a simple graph. We give new upper and lower bounds for eigenvalues and spread of its 
adjacency matrix. We also consider the cases when the given graph is regular or bipartite. 
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Introduction : Let G= (V, E) be a simple undirected 

graph with vertex set },,,{ 21 nvvvV L= of n 

vertices and edge set E of e edges. Let )( ii vdd =  be 

the degree of iv . Without loss of generality we 

assume that .11 nii dddd ≥≥≥≥≥ − LL  Let A be 

the n x n adjacency matrix of the graph G. All 
eigenvalues of A are real, as adjacency matrix of a 
simple graph is always real and symmetric. We 

denote them by iii AG λλλ == )()(  and assume 

that nλλλλ ≥≥≥= L21max . We recall that spread, 

is given by .)()( 1 nAspGsp λλ −==  

  We recall that chromatic number )(Gγ  is k if G is 

k-colourable and not (k-1) –colourable. Bounds for 

)(Gγ  can be obtained using bounds for largest 

eigenvalue (also called index) or spread, and ,nλ see 

[2], [3].  Also, let κ (G) be the size of largest clique in 
G:  κ (G) is called the clique number of G. A bound 

for 1λ  can give a lower bound for κ (G), see [3]. 

  By nI  we denote the identity matrix of order n and 

we represent the trace of A by tr A. Also transpose of 

matrix A is denoted by
T
A . In section 2 first we 

present upper and lower bounds for the largest 
eigenvalue of a simple graph G. Bounds for regular 
and bipartite graphs are obtained as well.  Also 
bounds for spread are derived. Finally two examples 
are presented in section 3.  
We first give a lemma that will be used in our proof 
of Theorem 1. 
 Lemma 1 ([8], pp24) 
Let B be a nonnegative n × n matrix with row sums

nrrr ,,, 21 L . Then 

          .max)(min max i
i

i
i

rBr ≤≤ λ                                               

When B is irreducible also, the equalities hold 
throughout if and only if all the row sums of B are all 
equal.     
The above Lemma gives that 

                             (1)                                                                    
Also another bound is, see 

        .
1

)(max ∑
−

≤ id
n

n
Gλ                  (2)                                                                         

 Bounds For Eigenvalues :  In the first two results 
we present bounds for the largest eigenvalue of a 
simple graph. Related work can be found in [7], [9]. 
The upper bound below is always at least as good as 
(1). 
Theorem 1 
Let G be a simple graph. Then 
                                    

.
2

))(1(4)1(1
min)(

1

2

max

iii

i

ddidd
G

−−+++−
≤λ                        

(3)                                                                                                         
 Equality holds if G is a regular graph. 

Proof:          Let   i =1 or 1dd i = . Then (3) yields 

.)( 1max dG ≤λ  

 Now let ni ≤≤2  and 

.11 nii dddd ≥≥>≥≥ − LL  

We rewrite the adjacency matrix   )( jiaA=  as, 

                   ,







=

QR
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A

T
                                 

Where P and Q are matrices of order (i -1) and  (n-
i+1), respectively. Further we assume that  
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where, x is a real number always greater than one. 
Then, 
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Clearly   and B have same eigenvalues. In particular,

)()( maxmax BA λλ = .Let njBr j ,,1,)( L=  be the 

row sums of the matrix B. Then we have:  

   for 1, -i1 ≤≤ l  
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.)( 1max dG ≤λ
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   for ,n ≤≤ ki  
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Since 1>x   and ,11 nii dddd ≥≥>≥≥ − LL  

   for ,11 −≤≤ il     

                                                   

),2()
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)( 1 −−+≤ i
x

d
x

Br
l

                             

and for ,nki ≤≤   

         ).1()1()( −−+≤ ixdBr ik   

   Thus, 

                           

}.)1()1(,)2()
1

1(
1

{max)(max 1 −−+−−+≤ ixdi
x

d
x

Br ij
j

                                                                                               

 We,set                                       

.)1()1()2()
1

1(
1

1 −−+=−−+ ixdi
x

d
x

i
 

  Solving for ,x  
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 Since 2≥i  and idd >1 , we have .1>x  Hence by 

Lemma 1 we have, 
                        

).1()1()()( maxmax −−+≤= ixdBA iλλ                        

Putting the value of x we have, 
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Hence (3) follow. That equality holds when G is 

regular is clear.                                         
In our next result we obtain two lower bounds for the 
largest eigenvalue of a simple graph. 
Theorem 2 
Let G be a simple graph with the adjacency matrix A 
of order n. Then, 
                                            

).(
2

1
)( 21max dd

n
G +≥λ                             (4)                                  

Also, 

 ,)(max νλ ≥G                                               (5)                                                                    

where,                                                        ,∑=
i

i

n

d
m

.
1 222 md
n i

i −= ∑ν                      (6)                                                       

Proof:   Since A is symmetric nonnegative, 

             ,max)(
1||||||||

max xAyG T

yx ==
=λ                                      

Where, 2- norm is used (See [4, pp449]). Setting

T

n
x )1,,1,1(

1
L= and ,),(

2

1
lkeey lk ≠+= where ie  

is the 
th
i column of the identity matrix nI . Thus we 

have ).(
2

1
)(max lk

T dd
n

xAyA +=≥λ Taking 

maximum over all lklk ≠, and  (4) follows. 
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Hence (5) follow. 
 The next two results use ideas developed in [10]. 
Theorem 3 
Let G be an r-regular graph with the adjacency matrix 

A of order 2≥n  . Then for ,12 −≤≤ nk  

       
2/12/1

)1()1(
)1(

)1)(1(







 −−−−
+−≤−≤























−

−−−
+−

k

knrnrn
rn

kn

rnkrn
r kλ                                                                      

(7)                                                                                                                                                                          
Further, 
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 Proof:     We rewrite, 
                                                    

,and0 2 rn
i
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=

λλ  employing 

Theorem 2.2 of [10] we readily obtain the inequalities   
(7) . The inequality (8) follows from Theorem 2.1 of 
[10] and Perron Frobenious Theorem [2, pp18]. Finally 
inequality (9) follows from Theorem 2.1 of [10] and 
the interlacing inequality of eigenvalues of a real 
symmetric matrix, see [2, pp 21]. 
  Our next result is for a simple bipartite graph. We 

assume that ),( EWVG ∪=  is a bipartite graph 

with two disjoint sets of vertices with cardinality m 
and n such that nm≤ . Specifically vertex sets V and 

W are, }.,,,{},,,,{ 2121 nm wwwWvvvV LL ==
 

Let 

mvvv ,,, 21 L  have degrees mii dddd ≥≥≥≥≥ − LL 11 , 

respectively and denote .21 mddde +++= L Then 

adjacency matrix of G is an n)(m)( +×+ nm   matrix 

                     







=

0

0
TP

P
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Where, P is a non-zero, 0-1 matrix of order nm×  
with nm ≤ . Then                                                 
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Let )( ji

T
dPPD ==  and iN  be the set of 

neighbors of iν . Then || jiji NNd ∩= is the 

cardinality of ji NN ∩  and .,1, mjidd iii ≤≤=  

Also hdeDtr
m

ji

ji === ∑
,

22
Dtrand . We have the 

following theorem: 
Theorem 4 

Let G be a bipartite graph. Then 
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(10)                                                                              
Equality will hold throughout if 

.121 ==== mddd L  

Further, for ,2 mk ≤≤  

  ,)()(
2

m
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km
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e
Gk −

−
+≤λ             (11)                                              

and   

 )(
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)(

2
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kmm
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e
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−
−≥λ

   

 (12)                                    

Proof: The inequalities (10), (11) and (12) follow from 
Theorem 2.1 and Theorem 2.2 of [10].  Equality 
condition in (10) is clear. 
      Below we present a generalization of theorem 1.5 

of [5]. Let be the 0n  number of non-isolated vertices 

of G and let 0G  denote the subgraph of order 0n

obtained by deleting the isolated vertices of G. 
Theorem 5 
Let A be the adjacency matrix of a simple graph G. 
Then 
          

,)(2)()( 2
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22

1
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1
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1

2

1
llllll AtrtrAGsp

−

≤−+≤ λλ    

                                                                   (13)                                                                                 

where, .1≥l  
Equality holds throughout if and only if equality 
holds in the first inequality, equivalently, if and only 

if baKGore ,00 == for some a, b  with abe=  and 

.nba ≤+  

Proof: We rewrite ,222

1

lll Atrn ≤+λλ as 

            .)()( 2

1

2

1

2

1
lll λλ −+≤ trAAsp  

Also define  

    ].)(,0[,)()( 2

1

22

1

22 lllll trAtrAf ∈−+= λλλλ                                                                  

Then l

l

2

12
* )

2
(
trA

=λ  is a point of absolute maxima 

of )(λf  . Now inequality (13) follows on 

simplification of )( *λf . The equality condition 

follows as in Theorem 1.5 of [5]. 
Theorem 6 : Let G be a triangle free graph with n 

vertices and e edges. Then,   

           121 )(
2

1
)( ddd

n
Asp ++≥          (14)                                                                  
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          .)( 1dAsp +≥ν                               (15)                                                                                                                                                  

Where, ν is given by (6). 
Proof: Since G is a triangle free graph, there is an 

induced subgraph 
1,1 dK  in G .Thus by interlacing 

inequality for eigenvalues of a symmetric matrix, 

            .)( 1,1 1
dK dnn −=≤λλ  

Now both these result are clear, in view of Theorem  
    It is well-known that a graph is bipartite if and only 
if it has no odd cycle. The above Theorem 5 and 
Theorem 6 yield the following corollary. 
Corollary 7 

Let G be a bipartite graph with n vertices and e edges. 
Then 

              .)(2 2

1

22

1

max
lll Atr

−

≤λ                  (16)                                                                                                

Equality conditions are same as for (13) above. 
Also, 

           ),)(
2

1
(

2

1
121max ddd

n
++≥λ      (17)                                                              

and    

          ).(
2

1
1max d+≥ νλ                           (18)                                      

Where, ν is given by (6). 
Examples : We now compare our bounds for the 
largest eigenvalue of two simple graphs. All 
numerical eigenvalues are given approximately.  
Example 1 
Let G be a simple connected graph (as in [6, pp222]):                                                                                                            

                             

                                       Fig. 1 
The actual value of the largest eigenvalue is 3.2227.  

The upper bounds for this eigenvalue are: 

 
  
The lower bounds of inequality (4) and (5) are 2.3094, 
1.0 respectively 
Example 2 
The second graph is the tree, see (2.139, [2, pp285]):  
 
  
   
                                                                
 
                               
 
 
 
                                                Fig. (2)    
The actual value of the largest eigenvalue is 2.307. 
The upper bounds for this eigenvalue are: 
 Inequality      (1)    (2)     (3)   (10) 

 
 
 

 
    We find that the first upper bound given by (3) 
does well in example 1 while upper bound in (10) 
gives a good approximation in example 2. Among the 
lower bounds in example 2, first lower bound of (10) 
is the best. 
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