A*-ALGEBRAS - SECOND ISOMORPHISM THEOREM

DR. B. VIJAYA KUMAR

Abstract: This paper presents definition of A*-algebras, Congruence relation on A*-algebras, Fundamental theorem of homomorphisms of A*-algebras, First Isomorphism theorem on A*-algebras and proof of Second Isomorphism theorem on A*-algebras.

Keywords: A*-algebra, Congruence, Homomorphism, Isomorphism and Sub-A*-algebra.

Definition: An algebra $(A, \wedge, *, (-)^{\sim}, (-)_{\pi}, 1)$ is an A*-algebra if it satisfies: (i) $a_{\pi} \vee (a_{\pi})^{\sim} = 1, (a_{\pi})_{\pi} = a_{\pi}$ where $a \vee b = (a^{\sim} \wedge b^{\sim})^{\sim}$ (ii) $a_{\pi} \vee b_{\pi} = b_{\pi} \vee a_{\pi}$ (iii) $(a_{\pi} \vee b_{\pi}) \vee c_{\pi} = a_{\pi} \vee (b_{\pi} \vee c_{\pi})$ (iv) $(a_{\pi} \wedge b_{\pi}) \vee (a_{\pi} \wedge (b_{\pi})^{\sim}) = a_{\pi}$ (v) $(a \wedge b)_{\pi} = a_{\pi} \wedge b_{\pi}, (a \wedge b)^{\#} = a^{\#} \vee b^{\#}$ where $a^{\#} = (a_{\pi} \vee a^{\sim}_{\pi})^{\sim}$ (vi) $a^{\sim}_{\pi} = (a_{\pi} \vee a^{\#})^{\sim}, a^{\sim \#} = a^{\#}$ (vii) $(a * b)_{\pi} = a_{\pi} (a * b)^{\#} = (a_{\pi})^{\sim} \wedge (b^{\sim}_{\pi})^{\sim}$ (viii) a = b if and only if $a_{\pi} = b_{\pi}, a^{\#} = b^{\#}$. We write 0 for 1 $^{\sim}$, 2 for o * 1.

Example: $3=\{0, 1, 2\}$ with the operations defined below is an A*- algebra.

٨	0	1	2	V	0	1	2	*	0	1	2	x	0	1	2
0	0	0	2	0	0	1	2	0	0	2	2	\mathbf{X}^{\sim}	1	0	2
1	0	1	2	1	1	1	2	1	1	1	1	\mathbf{x}_{π}	0	1	0
2	2	2	2	2	2	2	2	2	0	2	2	x#	0	o	1

Lemma: For any x, y, z in an A*- algebra

(i) x^{~~} = x
(ii)(x ∧ y)[~]_π=(x[~] ∧ y)_π ∨ (x ∧ y[~])_π ∨ (x[~] ∧ y[~])_π
(iii)(x ∨ y)_π = (x[~] ∧ y)_π ∨ (x ∧ y[~])_π ∨ (x ∧ y)_π
(iv) x ∧(y ∨ z)= (x ∧ y) ∨ (x ∧ z).
Lemma: For any x, y in A
(i) (x * y)[~]_π=(x_π)[~] ∧ (y[~])_π
(ii) x = x_π * (x[~])_π[~]=(x_π) * x[#]
(iii) If x = e * f, where e, f ∈ B(A), e ∧ f = o, then x_π = e, x[#] = f.
Theorem: Every A*-algebra (A, ∧, *, (-)_π, (-)[~], 1)

satisfies the following conditions: For x, y, z in A (i) $x \wedge (y \wedge z) = (x \wedge y) \wedge z$

(ii) $x \wedge y = y \wedge x$

(iii) $x \land x = x$

(iv) $1 \wedge x = x$

(v) $x^{\sim} = x$

(vi) $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$ where $x \vee y$ $=(x^{\sim} \wedge y^{\sim})^{\sim}$ (vii) $1_{\pi} = 1$ (viii) $[(x_{\pi})^{\sim}]_{\pi} = (x_{\pi})^{\sim}$ (ix) $(x \wedge y)_{\pi} = x_{\pi} \wedge y_{\pi}$ (x) $(x \wedge x^{\sim})_{\pi} = 0$ where $1^{\sim} = 0$ (xi) $x_{\pi} \wedge (x_{\pi} \vee y_{\pi}) = x_{\pi}$ (xii) $(x \wedge y)^{\sim}_{\pi} = (x \wedge y^{\sim})_{\pi} \vee (x^{\sim} \wedge y)_{\pi} \vee (x^{\sim} \wedge y^{\sim})_{\pi}$ (xiii) $(x_{\pi})_{\pi} = x_{\pi}$ (xiv) $(x * y)^{\sim}_{\pi} = (x_{\pi})^{\sim} \wedge (y^{\sim})_{\pi}$ (xvi) $x = x_{\pi} * (x^{\sim}_{\pi})^{\sim}$

Theorem: An algebra $(A, \wedge, *, (-)^{\sim}, (-)_{\pi}, 1)$ satisfying axioms of the above theorem is an A*-algebra. **Definition:** Let $(A, \wedge, *, (-)^{\sim}, (-)_{\pi}, 1)$ be an A*-algebra and $A_1 \subseteq A$, A_1 is called a sub A*-algebra of A if A_1 is closed under $\wedge, *, (-)^{\sim}, (-)_{\pi}, 0, 1$.

Definition: An A*-algebra of sets (with universal set X) is a subset of T_X , closed under \land , \lor , $(-)^{\sim}$, $(-)_{\pi}$, *.

Definition: Let $(A_{\nu}, \Lambda, \vee, (-)^{\sim}, (-)_{\pi}, *, 1)$ and $(A_2, \Lambda, \vee, (-)^{\sim}, (-)_{\pi}, *, 1)$ be A*- algebras. A mapping $f : A_1 \rightarrow A_2$ is called an A*-homomorphism if $(i)f(a \wedge b)=f(a) \wedge f(b)$ (ii) f(a * b)=f(a)* f(b)(iii) $f(a_{\pi})=(f(a))_{\pi}$ (iv) $f(a^{\sim})=(f(a))^{\sim}$ (v)f(1)=1 and (vi) f(o) = o. If in addition f is bijective, then f is called an A*-isomorphism, and A_{ν} , A_2 are said to be isomorphic,

Definition: A congruence relation \emptyset on an A*-algebra is an equivalence relation on A satisfying (i) $a \emptyset b \Rightarrow a_{\pi} \emptyset b_{\pi}$, $a^{\#} \emptyset b^{\#}$, $a^{\sim} \emptyset b^{\sim}$ (ii) $a \emptyset b, c \emptyset d \Rightarrow (a * c) \emptyset (b * d)$, $(a \land c) \emptyset (b \land d)$. **Note:** The above definition is equivalent to (i) $a \emptyset b \Rightarrow a^{\sim} \emptyset b^{\sim}$ (ii) $a \emptyset b, c \emptyset d \Rightarrow (a \land c) \emptyset (b \land d)$ (iii) $a \emptyset b, c \emptyset d \Rightarrow (a * c) \emptyset (b \land d)$.

denote in symbols $A_1 \cong A_2$.

Theorem: Fundamental theorem of homomorphisms of A*-algebras:

Let A and B be A*-algebras, f a homomorphism of A into B. Then $\emptyset = f^{-1}f$ is a congruence on A and f(A) is a sub A*-algebra of B. Moreover, we have a unique homomorphism \overline{f} of A/ \emptyset into B such that $f = \overline{f}\vartheta$, where ϑ is the homomorphism $a \mapsto \overline{a}$ where $\overline{a} = \emptyset(a)$ of A into A/ \emptyset . The homomorphism \overline{f} is injective and ϑ is surjective.

Theorem: First isomorphism theorem on A*-algebras:

Let \emptyset be a congruence on an A*-algebra A, A₁ a sub A*-algebra of A. Let A'₁ be the union of the \emptyset - equivalence classes that meet A₁. Then A'₁ is a subalgebra of A containing A₁, $\emptyset_1 = \emptyset \cap (A_1 \times A_1)$ and $\emptyset'_1 = \emptyset \cap (A'_1 \times A'_1)$ are congruences on A₁ and A'₁ respectively, and $\overline{a}_{1\emptyset_1} \mapsto \overline{a}_{1\emptyset'_1}$ is an isomorphism of A₁/ \emptyset_1 onto A'₁/ \emptyset'_1 .

Theorem: Suppose A is an A*-algebra and \emptyset is a congruence relation on A. Suppose θ is another congruence on A. Define $\vartheta_{\theta/\emptyset} : A/\emptyset \to A/\theta$ as $\bar{a}_{\emptyset} \mapsto \bar{a}_{\theta}$. Then $\vartheta_{\theta/\emptyset}$ is a map if and only if $\emptyset \subseteq \theta$. So, in this case $\vartheta_{\theta/\emptyset} : \bar{a}_{\emptyset} \mapsto \bar{a}_{\theta}$ is a unique map such that

Note: $\theta/\emptyset = \{ \bar{a}_{\emptyset} \in A/\emptyset \mid \bar{a}_{\theta} = \bar{0}_{\theta} \}$. This is also called kernel of $\vartheta_{\theta/\emptyset}$.

Note: Define $\theta/\emptyset = \{(\bar{a}_{\emptyset}, \bar{b}_{\emptyset}) | \bar{a}_{\emptyset}, \bar{b}_{\emptyset} \in A/\emptyset \text{ and } \bar{a}_{\theta} = \bar{b}_{\theta}\}$. θ/\emptyset is also called kernel of $\vartheta_{\theta/\emptyset}$. **Theorem:** θ/\emptyset is a congruence relation on A/\emptyset . **Theorem:** Suppose θ_1, θ_2 are two congruences on an A^* -algebra A such that $\theta_1 \supset \emptyset, \theta_2 \supset \emptyset$. Then $\theta_1 \supset \theta_2$ if and only if $\theta_1/\emptyset \supset \theta_2/\emptyset$. In particular, $\theta_1/\emptyset = \theta_2/\emptyset$ implies $\theta_1 = \theta_2$.

Theorem: Any congruence $\overline{\theta}$ on A/\emptyset has the form θ/\emptyset , where θ is a congruence relation on the A*-algebra A such that $\theta \supset \emptyset$.

References:

 Koteswara Rao, P: A* - algebras and If – Then – Else Structures, Ph.D.Thesis, Nagarjuna University, October 1994. **Theorem:** Let A be an A*-algebra, Ø be a congruence on A, A/Ø the corresponding quotient algebra. Let θ be a congruence on A such that θ contains Ø. Then there exist a unique homomorphism $\vartheta_{\theta/\emptyset} : A/\emptyset \to A/\theta$ such that

$$\vartheta_{\theta/\emptyset}\vartheta_{\emptyset} = \vartheta_{\theta}.$$

and if θ/\emptyset denotes the kernel of $\vartheta_{\theta/\emptyset}$, then θ/\emptyset is a congruence on A/\emptyset . The map $\theta \mapsto \theta/\emptyset$ is a bijective map of the set of congruences on A/\emptyset . Moreover, $\theta_1 \supset \theta_2$ are two congruences on A containing \emptyset if and only if $\theta_1/\emptyset \supset \theta_2/\emptyset$.

Theorem: Second isomorphism theorem on A*-algebras:

Let θ and \emptyset be congruences on the A*- algebra A such that $\theta \supset \emptyset$ and let θ/\emptyset be the corresponding congruence of A/ \emptyset . Then $(\overline{a_{\theta}})_{\theta/\emptyset} \mapsto \overline{a}_{\theta}$, $a \in A$ is an isomorphism of $(A/\emptyset)/(\theta/\emptyset)$ onto A/θ . **Proof:** The homomorphism $\vartheta_{\theta/\emptyset} : A/\emptyset \to A/\theta$ is an epimorphism and has kernel θ/\emptyset . Therefore θ/\emptyset is an equivalence relation on A/\emptyset .

By Fundamental theorem of A*-algebras there exist a unique morphism $\bar{\vartheta}_{\theta/\emptyset}$ of $(A/\emptyset)/(\theta/\emptyset)$ into A/θ such that the diagram

$$\overline{\vartheta}_{\theta/\phi}\vartheta = \vartheta_{\theta/\phi}$$

and $\bar{\vartheta}_{\theta/\phi}$ is injective and ϑ is surjective. Since, ϑ , $\vartheta_{\theta/\phi}$ are epimorphisms and $\bar{\vartheta}_{\theta/\phi}\vartheta = \vartheta_{\theta/\phi}$, $\bar{\vartheta}_{\theta/\phi}$ is surjective. Therefore $\bar{\vartheta}_{\theta/\phi}$ is an isomorphism.

2. Koteswara Rao, P and Venkateswara Rao, J: Prime ideals and Congru-ences in A*-algebras, South East Asian Bulletin of Mathematics, Hongkong.

- Manes E.G: Adas and the Equational Theory of If-Then-Else, Algebra Universalis, Vol. 30(1993), 373-394.
- 4. Sikorsky, R: Boolean Algebras, Berlin, Springer Verlag OHG, 1960.
- 5. Srinivasa Rao, T: Contributions to A*algebras;Ph.D. Thesis, Acharya Nagarjuna University, 2004, A.P., India.
- 6. Venkateswara Rao, J: On A*-algebras, Ph.D. Thesis, Nagarjuna University,2000, A.P., India.
- 7. Vijaya Kumar, B: A*-algebras and 3-Rings; Ph.D. Thesis, Acharya Nagarjuna University, 2009, A.P., India.

Dr. B. Vijaya Kumar Lecturer in Mathematics, Andhra Christian College, Guntur, Andhra Pradesh, India