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Abstract : This paper critically examined sequences (functions whose domain is a set of natural numbers, Ν  

and the range is a subset of real numbers,ℜ ) and series (the partial sum of a sequence), their convergence and 
divergence. The paper briefly considered some basic applicable theorems to sequences and series in terms of 
their convergence or otherwise. Majorly, the four basic tests; D’Alembert’s ratio test, Leibnitz test, integral test 
and nth root test were considered using different sets of series. Results explicitly show how the sequences and 
series converge or diverge respectively and how more than one test can be applicable to just a series. 
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Introduction : A function whose domain is a set of 
natural numbers N and the range is a subset of real 

numbers ℜ is called a sequence. Thus a function S is 
defined as a sequence if S: N→ℜ. It is generally 

denoted by { nS }; n = 1,2,3… One readily recalls, from 

elementary mathematics, that a sequence is a set of 
numbers arranged according to a prescribed rule and 
such rule can be used to obtain other members of the 
sequence. On the other hand, a series is a partial sum 
of a sequence.  
In mathematical analysis, sequences and series are of 
great importance with a lot of consequences as far as 
their convergence or divergence is concerned. 
Ponnusammy (2012) and Balogun (2006) respectively 
had a lot to say about this in their books, foundations 
of mathematical analysis and mathematical methods. 
In fact, the basic theory of convergence of series was 
worked out by the French mathematician, Augustine 
Louis Cauchy in the 1820s as rightly contributed by 
Berggren and Singer (2007). The theory and 
application of infinite series are important in virtually 
every branch of pure and applied mathematics. This 
paper is concerned about discussing the convergence 
or otherwise of the sequence and series with less 
emphasis on their types but briefly mentioned in 
passage with some applicable theorems. 
Sequence 
As defined above, a sequence is a function whose 
domain is a set of natural numbers N and the range is 
a subset of real numbers, ℜ. A sequence is established 
or defined only if a rule is given that determines the 
nth term for every positive integer n and this rule 
may be given by a formula for the nth term. In 
elementary mathematics, important types of 
sequence include the arithmetic sequence and 
geometric sequence. In advance terms in analysis, we 
have various types which include; increasing 
sequence, decreasing sequence, monotone sequence, 
constant sequence, bounded sequence, Cauchy 
sequence, uniformly continuous sequence, etc. 

A sequence { }nS is said to be Cauchy if given 0ε > , 

there exists ( )n ε such that | |m nS S ε− < for all 

( )m n ε> and all ( )n n ε> . This is equivalent to 

given 0ε > , there exists an integer ( )n ε such that 

| | ( )n k nS S n nε ε+ − < ∀ > and all k N∈ . We shall 

still make mention of this later. 
2.2 convergence/divergence of a sequence 

Let { nS } be a sequence. If for a given So∈R and ε > 0 

there exists N∈Ν such that n ≥ N implies| Sn-S0| < ε; 

then sequence { nS } is said to be convergent and 

converges to S0. S0 is called the limit of the sequence. 
Symbolically, we write  

n
n

SLim
∞→

 = So  (2.2) 

We exemplify this as we see that the sequence         

nS = 








n

1
 n = 1,2,… has a limit 0. (i.e. 

0lim 0.n
n
S S

→∞
= = ). By the definition of a convergence 

sequence; lim 0.n
n
S

→∞
=  Hence for a given 0ε > ; 

there exists N ∈ Ν such that for all n ≥ N implies that 

n

1
 < ε . If we choose N so that 

1

N
ε< . Then 

n

1
 < 

holds since 
n

1
 <  

N

1
 if n ≥ N. Thus, 

∞→n
Lim  

n

1
  = 0. 

Similarly, the limit of the sequence 
1)-(

1  
  

2

nn

n
an

+
= as  

n → ∞ and n → - ∞ gives value 1. 
Theorem 2.1: A sequence converges to a unique limit. 
Remark 2.1: A sequence is said to be convergent if it 
has a limit and divergent if otherwise.  

A sequence { nU } is said to diverge to ∞ if for a given 

K > 0 there exists a natural number N such that Un < 

K for all n ≥ N. Symbolically, we write lim n
n
U

→∞
= −∞ . 

3.1Series   The expression U1 + U2 + U3,+ …+ Un+ = 
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∑
∞

=1n

nU is called the series of the sequence { nU }. 

Types of Series include; Alternating Series, Harmonic 

Series (this is a special series of the form
1

1

n n

∞

=
∑  and it 

is usually divergent as we shall see later), P-Series 
(this is another special series just like the harmonic 

series. It is of the form
1

1
p

n n

∞

=
∑ and is convergent 

unlike the harmonic as shall be shown later), Power 
Series, Taylor’s Series, Maclaurin Series, Fibonacci 
Series, geometric series, etc. 
3.2Convergence/Divergence Of Series 
If the sequence S1, S2,…,Sn of the partial sums of a 

series converges to S, we write S = ∑
∞

=1i

iU  

The limit to which a convergent series converges is 
called the sum of the series. If the sum of the infinite 
series exists, it is given by S∞. Hence, we say that a 

series is convergent if n
n

SLim
∞→

= S 

It is said to diverge if  n
n

SLim
∞→

 = ∞ Or  if n
n

SLim
∞→

 

= - ∞. 
Remark 3.1: A series that is neither convergent nor 
divergent is called an oscillatory series. 
A power series converges if |x| < R and diverges if |x| 
> R where the constant R is the radius of convergence 
of the series. The interval –R < x < R is called the 
interval of convergence of the series. 
We shall begin discussion by considering the 
geometric series      a + ar + ar2 +    + arn-1

. 

This type of series will either converge or diverge 
depending on the behavior of r. 

Now, suppose r = 1, then nS na= . For a > 0, n
n

SLim
∞→

 

= ∞ and for a < 0, n
n

SLim
∞→

 = - ∞. 

So for all a ≠ 0, the series diverges. 

Again, if r < 1, 
∞→n

Lim nS  = 
∞→n

Lim
r

ra

-1

)-1( n

 (By the sum 

of geometric progression) 

=
∞→n

Lim 








−− r

a

r

a

1

r
 - 

1

n

 

  = 0 - 
1 r

a

−
  because 

∞→n
Lim

n
r  = 0 for 

all r < 1 and is convergent. 

Hence, 
∞→n

Lim
n
r  = 0 and if r > 1, n

n
Lim S
→∞

does not 

exist. 

In the same vein, the series ∑
∞

= ++1 )2)(1(

1

n nn
 is 

convergent and that it converges to ½. Also, the 

series 
0 1k

k

k

∞

= +
∑ and 

0

sin
x

x
∞

=
∑  both diverge. We can 

put on note that if 0ka → , then 
0

k

k

a
∞

=
∑ converges 

but there are divergent series for which 0ka → .  

Then, does it imply that by the definition of limit 
existence, every series will be suspected to converge? 

This could be false! The harmonic series 
1

1

n n

∞

=
∑ which 

diverges, proves the contradiction. This can be seen 
thus; 

Let 
1

1

n n

∞

=
∑  be defined by { }nx =

1 1 1
1 ...

2 3 n
+ + + + , 

n N∈ ; then{ }nx is not a Cauchy sequence because 

the series does not conform to the definition of 
Cauchy (see Balogun, 2006). To see this, let m > n, 

then 
1 1 1

...
1 2

m nx x
n n m

− = + + +
+ +

. Now, each of 

the m-n terms on the right hand side is greater than 

or equal to 
1

m
 and hence, m n

m n
x x

m

−
− > . By 

considering the special case m=2n, we have 

1

2
m nx x− >  which shows that { }nx is not a Cauchy 

sequence and hence that nx diverges. 

Theorem 3.1: The convergence of the series                   

∑
∞

=1n

nU  implies that 
∞→n

Lim Un = 0. 

3.3Tests For Convergence Of Series 
Like the contrast we had with the harmonic series, by 
mere inspection, one readily observes it will 
converge. As such, in order not to make such 
analytical error, the need for the various tests for the 
convergence. We shall consider basically four tests; 
the integral test, the D’Alembert ratio test, the 
Leibnitz test, and the nth root test. 
The Integral Test 
In the integral test each term an of the positive term 

of the series of a monotonic decreasing function an+1 < 

an is replaced by f(n). The integral variable ‘n’ is then 
replaced by a continuous variable x to have a function 
f(x) which is defined for all values of x.  
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In essence, this test is useful when the terms have a 
derivative configuration. 
Theorem 3.2: Let f(x) be a non-increasing function 

such that f(x) ≥ 0; x ∈ [1,∞]. then f(1) + f(2) + … + = 

∑
∞

=1

)(
n

nf will converge if the improper integral 

∫
∞

1

)( dxxf  converges and will diverge if the improper 

integral ∫
∞

1

)( dxxf diverges. 

Hence, by the integral test that the series ∑
∞

=1

1
 

n
pn

 

converges for p > 1 and diverges for p ≤ 1 
Now, let us see by the integral test whether the 
harmonic series diverges. The harmonic series is of 

the form 
1

1

n n

∞

=
∑ . Now, put

1
( )f x

x
= . Note 

1

dx

x

∞

∫  

diverges. Hence, by the integral test, 
1

1

k k

∞

=
∑  diverges. 

D’Alemberts Ratio Test 

Consider the series U1+U2+U3+…+Un+…= ∑
∞

=1n n
U  

The series is said to converge if 
∞→n

Lim

n

1n

U

U
+  < 1 and 

diverges if 
∞→n

Lim

n

1n

U

U
+  > 1. 

Remark 3.3: The Ratio Test fails to test for the 

convergence or divergence of a series if 
∞→n

Lim

n

1n

U

U
+   = 1. 

This test is effective with factorials and combinations 
of powers and factorials. If the terms are rational 
functions, it is inconclusive and difficult to apply. 
From the foregoing, the D’Alemberts test fails for the 

harmonic series 
1

1

n n

∞

=
∑  while the series 

2
1

1

n n

∞

=
∑  

converges by the same test. 
Now, let us see with the Ratio Test that 

∑
∞

=

−−

1
2

1
2)1(

n

nn

n
 diverges to 2.  

Let an =
2

n1-n

n

2-1)(
 ; an+1 = 

2

1+n1+1-n

)1+n(

2-1)(
 = 

2

1n

)1(

2-1)(

+

+

n

n

and  
n

n

a

a 1+  =  
)1(

2n
2

2

+n
 

So, 
∞→n

Lim
n

n

a

a 1+  = 
∞→n

Lim  
)1(

2n
2

2

+n
= 2. 

The series diverges. In fact, if we use the Leibnitz test 
(to be discussed later) for this, obviously it will 
diverge. Hence, one should not make a mistake of 
saying since the limit equals 2, it implies 
convergence. No, the limit is not for the series 
directly. 

Now, let us compare this series 
1

1

!

n

k
∑  with the 

harmonic series 
1

1n

k
∑ discussed earlier. 

By the ratio test, we observe that 
!

1

k
ak =  and

!1

1
1

+
=+
k

ak . Hence, 

 1 1 !

( 1)! 1

k

k

a k

a k

+ = ×
+

=
! !

( 1)! ( 1) !

k k

k k k
=

+ +

1

1k
=

+
.   

Thus, 
1

lim 0
1n k→∞
→

+
. 

Showing that 
1

!k
∑ converges to 0 as k→∞ . One 

stands the chance of concluding that this will also 
diverge since it has a resemblance of the harmonic 
series which is known to diverge. 
The nth Root Test 
This test is used if powers are involved. Suppose that 

for the series∑
∞

=1n

nU ;
∞→n

Lim |Un|1/n = r. The series 

converges if r < 1 and diverges if r > 1. i.e. ∑
∞

=1n

nU  

converges if 
∞→n

Lim |Un|1/n  < 1 and diverges if                  

∞→n
Lim |Un|1/n  > 1. 

Remark 3.4: The nth Root Test fails to determine the 
convergence or the divergence of a series if r = 1.  
Leibnitz’s Test 
Leibnitz’s test sometimes referred to as Alternating 
Series test is used for determining the convergence or 
otherwise of an alternating series. 
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An alternating series converges if  

(i) |an+1| ≤ |an| 

and  (ii) 
∞→n

Lim |an| = 0 for n ≥ 1   (*) 

Now, let us use the Leibnitz Test to test for the 

convergence/divergence of the series. ∑
∞

= +1

1-n

21

-1)(

n
n

. 

Note, |an| = 
n

2+1

1
and  |an+1| = 1

11

21

)1(
+

+−

+

−
n

n

= 
121

1
++ n

. 

For all n ≥ 1, 
n21

1

+
 > 

1+n
2+1

1
. This implies that 

|an+1| ≤ |an| for all n ≥ 1 

Therefore  
∞→n

Lim |an| = 
∞→n

Lim
n21

1

+
= 0. 

Thus the series is convergent.  
Remark 3.5: A series may be absolutely convergent 
and conditionally convergent. 

A convergent series ∑
∞

=1n

na is said to converge 

absolutely if ∑
∞

=1n
|an| converges. It converges 

conditionally if ∑
∞

=1n
na converges but ∑

∞

=1n
na  diverges. 

Theorem 3.4: Every absolutely convergent series is 
convergent.  
Let us numerically demonstrate the last remark and 

theorem by considering an =
n

1-n-1)(
  for     n= 

1,2,3,… 

It follows that  ∑
∞

=1n
na  = ∑

∞

=1n n

1-n-1)(
 = 

... + 
4

1
 - 

3

1
 + 

2

1
 - 1  (1) 

and ∑
∞

=1n
|an| = ∑

∞

=1n
|

n

-1)(
1-n

|= ... + 
4

1
 + 

3

1
 + 

2

1
 + 1

  (2) 
Remark 3.5: The series (1) converges and (2) diverges 
by Leibnitz’s test.  
 
Conclusion :  
It is interesting studying sequences and series with 
their convergence or divergence. From our 
discussion, we see that mere inspection of a series or 
sequence may not give us actual conclusion if such 
will converge or diverge directly. Also, if one has used 
a test to verify the convergence or otherwise of a 
series, one can further confirm using other relevant 
test(s). 
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