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Abstract : Here we present the effects on the marginal stability for a two dimensional convective flow in a 
horizontal mushy layer. We assume that this mushy layer has a permeable mush-liquid interface and variable 
permeability. The computational results presented here are based on the equations developed in the paper [12]. 
We compute the basic state solutions and the critical pair (Rayleigh number, wavenumber) using JMSL (Java 
Mathematical and Statistical Library) and fourth order Runge-Kutta method in combination of the shooting 
method. 

 
Introduction : Analysis of stability of flows has been 
an important active research area in many applied 
fields including applied mathematics, various 
sciences and many branches of engineering. Stability 
related to hydrodynamics has been studied various 
authors [1,2]. There are several applications of porous 
medium convection [3]. Fowler [4] developed a 
mathematical model for the convective and freckling. 
During solidification of binary alloys, 
experimentalists observed a partially solidified layer 
consisting of dendrites. The mass and heat transfer 
within the mushy layer can cause impurity known as 
freckle. Many previous studies [5-12] have 
investigated in details about the mechanism of 
freckle formation. The objective of the present 
investigation is to analyze numerically the effects of 
various parameters in a reactive mushy layer.  
2. Governing Equations for the System  

We consider that the thickness of the mushy 
layer is d. Nondimensional governing equations 
representing the mushy layer system is given by [5, 7, 
8, 9]  
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with boundary conditions become  

Θ = −1, W = 0     at z =0  
Θ =Φ= ∂zW = 0    at z = δ  

where  U
r

, К, P, R, Θ, k̂ , t, z, Φ, C and S respectively 

represents the velocity, permeability of the medium, 
pressure, Rayleigh number, temperature, unit vector 

along vertical upward direction, time variable, space 
variable in vertical direction,  solid fraction, 
concentration ratio and the Stefan number. Here W 

is the vertical component of  U
r

  and δ denotes the 

thickness. 
2.1 Solution Procedure  
We write our system as following  

               ),,,,()( tzyxzb θεθ +=Θ                                                                                  

               ),,,,()( tzyxzb φεφ +=Φ                                                             

               ),,,,(0 tzyxuU
rrr

ε+=                                                                 

(2.5) 
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where bbbb kp ,,, φθ  are for the steady basic state 

motionless system, pu,,,
r

φθ , K are corresponding 

perturbed variables. The perturbation parameter ε is 

given by 1

2 /)( RRR c−=ε .   

2.2 Steady State Solutions 

Steady basic state solution for bθ  in implicit form is 

given by [10, 12]  
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Here 1α  and 2α  are, respectively, given by  
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where ∞θ  is the non-dimensional far field 

temperature. bφ  is obtained as  
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Mushy layer thickness is obtained as  
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2.3 Perturbed System 
Here we follow a procedure mentioned by Chandrasekhar [1]. Introducing poloidal and toroidal components of  

u
r

  as Pu  and  Tu  respectively and writing  2∆  as the Laplacian in the xy- plane, for 2-dimensional case, 

perturbed system can be expressed as (see [9])  
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 Linear System : 
Now using the subscripts 0, 1 and 2 are used for the linear, first-order and second-order perturbed quantities 
respectively and expressing the dependent variables as  
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the linear system can obtained as  
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where 00 ,,
0

φθPu  are unknown linear dependent variables. The boundary conditions are 

 000
== θPu     at  z = 0                  0000

===∂ φθPzu   at  z = δ. 

Using normal mode approach [1], and writing  =),,(0 stzxf  ..)(
~

)( CCezftA
xi

s +α
 where ..CC  stands for 

complex conjugate, the PDE system (3.2) becomes a linear ODE system  

 
where D = z∂  . The adjoint system is given by (see [12])  

 

 
 Numerical Results : For variable permeability case, we choose n =3 and for constant permeability case, we 
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choose n =0. We use C =5, 8 and S =1, 2. The thickness of the layer for various parameters is presented in table 
1. Computed critical wavenumber, Rayleigh number are given in table 2.  It is observed that critical Rayleigh 
number is higher for higher values of far field temperature. 
 

Table 1: The thickness of the layer for different 
parameters 

Table 2: The critical pair ( )Cc R,α for various 

parameters 

C  S  ∞θ  δ  

5  1.0  0.1  2.15388  
5  1.0  0.2  1.63401  
5  1.0  0.3  1.35108  
5  2.0  0.1  1.95989  
5  2.0  0.2  1.50515  
5  2.0  0.3  1.25510  
8  1.0  0.1  2.23450  
8  1.0  0.2  1.68627  
8  2.0  0.1  2.09456  
8  2.0  0.2  1.59427  

 

 

C  S  ∞θ   n  ( )Cc R,α  

5  1.0  0.1  0  (1.21, 15.9038)  

5  1.0  0.2  0  (1.53, 18.4395)  
5  1.0  0.3  0  (1.81, 20.9515)  

5  1.0  0.1  3  (1.25, 19.7393)  
5  1.0  0.2  3  (1.58, 23.1963)  

5  2.0  0.1  0  (1.35, 15.5320)  
5  2.0  0.2  0  (1.67, 17.7472)  

5  2.0  0.1  3  (1.38, 19.2350)  
5  2.0  0.2  3  (1.72, 22.2658)  

8  1.0  0.1  3  (1.19, 18.4975)  

Figures 4.1 and 4.2 present results for marginal stability curves different ∞θ   and S = 1, C = 5 with n = 0 and n = 

3 respectively. Comparison of the linear marginal stability curves with respect to the permeability is shown in 
figures 4.3 and 4.4. The critical wavenumber and critical Rayleigh number are higher for variable permeability 
case than the constant permeability case.  

 
Figure 4.1: Marginal stability curves with n = 0 for 

different ∞θ   and S = 1.0, C = 5.0. 

Figure 4.2: Marginal stability curves with n = 3 for 

different ∞θ   for S = 1, C = 5 

 
 

Figure 4.3: Marginal stability curves for S = 1.0, C 
=5.0. 

Figure 4.4: Marginal stability curves for S = 2.0, C 
=5.0. 

 
 

Numerical results from figures 4.5 and 4.6 indicate that lower Stefan number improves the stability.  
Figure 4.5: Marginal stability curves with 

different concentration ratios and  ∞θ  = 0.1,  S = 

1.0.  

Figure 4.6: Marginal stability curves with different 

Stefan numbers with  ∞θ  =0.1,  C = 5. 
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Conclusion : The linear stability is enhanced by smaller values of C for fixed S and far field temperature. It is 
also observed that higher far field temperature enhances the linear stability.  
Acknowledgment : Author thanks Professor D. N. Riahi, and M. S. Muddamallappa for their help. 
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