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Abstract: The main purpose of this article is to solve linear and nonlinear homogeneous and non-
homogeneous partial differential equations involving mixed partial derivatives by using Laplace Substitution 
Method. 
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Introduction: The partial differential equations 
arising from engineering and scientific applications, 
which were previously intractable, can now, be 
routinely solved [2]. Finite difference methods 
approximate the differential operators and hence, 
solve the difference equations. Infinite element 
method the continuous domain is represented as a 
collection of a finite number N of subdomains known 
as elements. The collection of elements is called the 
finite element mesh. For time dependent problems, 
the differential equations are approximated by the 
finite element method to obtain a set of ordinary 
differential equations in time. These differential 
equations are solved approximately by finite 
difference methods or other methods. In all finite 
difference and finite elements it is necessary to have a 
boundary and initial conditions. But the Adomian 
decomposition method, which has been developed by 
George Adomian (Solving Frontier Problem of 
Physics: The Decomposition Method, Kluwer 
Academic Publishers, Boston, MA, 1994), depends 
only on the initial conditions to obtain solution in 
series form which almost converges to the exact 
solutions of the problem. In recently years, some 
other ansatz methods have been developed, such as, 
the tanh method [3, 4], the extended tanh-function 
method [5, 6], the modified extended tanh-function 
method [10], variational iteration variables method 
[11, 12] and the sine-cosine method [9, 10]. 
We know that in [1] Laplace Substitution Method is 
not useful to solve linear partial differential equations 
involving mixed partial derivatives in which general 
linear term operator not equal to zero i.e (Ru(x; 
y)
find exact or approximate solution of linear and 
nonlinear partial differential equations involving 
mixed partial derivatives with the help of Adomian 
polynomial. This powerful method will be proposed 
in section 2; in section 3 we will apply it to three 
coupled partial differential equations involving mixed 
partial derivatives out of them example 1 is linear 
nonhomogeneous partial differential equation 
involving mixed partial derivatives with Ru(x, y) 

and example 2 and 3 are of nonlinear 
nonhomogeneous partial differential equations 
involving mixed partial derivatives. In last section we 
give some conclusion. 
Laplace Substitution Method for nonlinear 
partial differential equations involving mixed 
partial derivatives: The aim of this section is to 
discuss the Laplace substitution method for nonlinear 
partial differential equations involving mixed partial 
derivatives. Let us consider the consider the general 
form of nonlinear, nonhomogeneous partial 
differential equation involving mixed partial 
derivatives with initial conditions is given below 
Lu(x, y) + Ru(x, y) + Nu(x, y) = h(x, y)          (2.1) 
u(x, 0) = f(x), uy(0, y) = g(y)                  (2.2) 

Where L = 
yx

 , Ru(x,y) is the remaining linear 

operator, Nu represents a general nonlinear 
differential operator and h(x, y) is the source term. 
We can write equation (2.1) in the following form 

yx

u
+ Ru(x, y) + Nu(x, y) = h(x, y) 

 
y

u

x
+ Ru(x; y) + Nu(x; y) = h(x; y)  (2.3) 

Substituting 
y

u
= U in equation (2.3), we get 

x

U
 + Ru(x; y) + Nu(x; y) = h(x; y)            (2.4) 

Taking Laplace transform of equation (2.4) with 
respect to x, we get 
sU(s, y) -U(0, y) = Lx [h(x, y) -Ru(x, y) -Nu(x, y)] 

U(s; y) = 
s

1
g(y) + 

s

1
Lx [h(x; y) -Ru(x; y) -Nu(x; y)]

                                                                 (2.5) 
Taking inverse Laplace transform of equation (2.5) 
with respect to x, we get 

U(x; y) = g(y) + L-1
x{[
s

1
Lx [h(x, y) - Ru(x, y) Nu(x, y)]}
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                                                                  (2.6) 
Re-substitute the value of U(x,y) in equation (2.6), we 
get 
( , )

= g(y) + L L [h(x, y) Ru(x, y)

Nu(x, y)]                                                    (2.7) 

This is the first order nonlinear, nonhomogeneous 
partial differential equation in the variables x and y. 
Taking the Laplace transform of equation (2.7) with 
respect to y, we get 

su(x, s) = f + L g(y) + L L [h(x, y) Ru(x, y)

Nu(x, y)]   

u(x, s) = f(x) + L g(y) + L L [h(x, y)

Ru(x, y) Nu(x, y)] (2.8) 

Taking the inverse Laplace transform of equation 
(2.8) with respect to y, we get 
u(x, y) =

f(x, y) + L L g(y) + L L [h(x, y)

Ru(x, y) Nu(x, y)]  (2.9) 

For solving nonlinear, non homogeneous PDE 
involving mixed partial derivatives by LSM, let we 
consider solution of (2.1) is in series form. Therefore 
suppose that 
u(x, y) = u (x, y)                          (2.10) 
is a required solution of (2.1) in series form. We know 
that nonlinear term Nu(x, y) appear in equation (2.1), 
let we decompose it by using Adomian polynomial 
which is defined bythe formula [2] 

=
!

N[ u ]                 (2.11) 

Nu(x, y) = A (2.12) 
Where An is an Adomian polynomial of u0, u1, u2, 
u3,……………..un. Substitute (2.10) and (2.12) in equation 
(2.9), we get 

u (x, y) =

f(x, y) + L L g(y) + L L [h(x, y) Ru(x, y)

Nu(x, y)]   

On comparing both sides of above equation, we get 
u (x, y) =

f(x) + L L g(y) + L L [h(x, y)]   

u (x, y) = L L L L [Ru (x, y) + A ]   

u (x, y) = L L L L [Ru (x, y) + A ]   

In general we get the, following required recursive 
relation 
u (x, y) =

f(x) + L L g(y) + L L [h(x, y)]           

                                                          (2.13) 

u (x, y) = L L L L [Ru (x, y) + A ] ,        

n 0 (2.14) 
From this recursive relation we can calculate the 
factors ui,i=1, 2, 3, 4,…………of u(x, y).Substitute all 
values of ui in equation (2.10), we get the required 
solution of equation (2.1). 
3.Applications: To illustrate this method for coupled 
linear and nonlinear partial differential equations 
involving mixed partial derivatives with Ru(x, y) 
We take three examples in this section. 
Example 1: Consider the following linear partial 
differential equation with Ru(x, y)  

+ + u = 6x y             (3.15) 

with initial conditions 
 u(x,  0) = 0,  u(0, y) = 0,  uy(0,  y) = 0          (3.16) 

In the above example Ru(x, y) =
( , )

+ u(x, y) . Use 

the substitution 
( , )

= U(x, y) inequation (3.26), we 

get 

+ + u = 6x y                    (3.17) 

Taking Laplace transform of equation (3.17) with 
respect to x, we get 
sU(s, y) u(0, y) + su(s, y) u(0, y) + L [u(x, y)] =

  

U(s, y) = u(s, y) L [u(x, y)]     (3.18) 

Taking inverse Laplace transform of equation (3.18) 
with respect to x, we get 

U(x, y) = 2yx u(x, y) L
1

s
L [u(x, y)]  

( , )
= 2yx u(x, y) L L [u(x, y)]       (3.19) 

Taking Laplace transform of equation (3.19) with 
respect to y, we get 
su(x, s) u(x, 0) =

L u(x, y) + L L [u(x, y)]   
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u(x, s) = L u(x, y) + L L [u(x, y)]                                

(3.20) 
Taking inverse Laplace transform of equation (3.20) 
with respect to y, we ge 
u(x, y) =

x y L L u(x, y) + L L [u(x, y)]    (3.21) 

In equation (3.15) does not contain nonlinear term 
Nu(x, y). Therefore there is not required to use 
Adomian polynomial. Let we suppose that, 
u(x, y) = u (x, y)                 (3.22) 
is a required solution of equation (3.15). Substitute 
(3.22) in equation (3.21), we have 

u (x, y) = x y L L u (x, y) +

L L u (x, y)                   (3.23) 

On comparing both sides of above equation, we have 
a recursive relation 
u (x, y) = x y    (3.24) 
u (x, y) =

L L u (x, y) + L L u (x, y)  ,         

n                                  (3.25) 
From above recursive relation, we get 

u (x, y) = x y ,  u (x, y) = +  ,    

u (x, y) = + + , 

u (x, y) =
x y

60
+
x y

60
+
x y

400
+

x y

240
+
x y

7200
 

and so on. 
Substitute all these values in equation (3.22), we get 

u(x, y) = x y + + +

               (3.26) 

This is the required solution of equation (3.15). Which 
can be verifying through the substitution? 
Example 2: Consider the following nonlinear 
homogeneous partial differential equation with given 
initial conditions in which Ru(x; y) = 0 

=    (3. 27) 

u(x, 0) = 0 ,   uy(0, y) = 1  (3.28) 
Above equation (3.27) we can write in the form 

of u = u . Let we use the substitution 
( , )

=

U(x, y) in equation (3.27), we get 

= U     (3.29) 

This is the first order nonlinear partial differential 
equation with initial condition U (0, y) = 1.Taking 
Laplace transforms of above equation (3.29) with 
respect to x, we get 
sU(s, y) U(0, y) = L [U ] 

U(s, y) =
1

s
+
1

s
L [U ] 

Taking inverse Laplace transform of above equation 
on both sides with respect to x, we get 
 

U(s, y) = 1 + L
1

s
L [U ]  

= 1 + L L                      (3.30) 

Taking Laplace transform on both sides of equation 
(3.30) with respect to y, we get 

u(x, s) = + L L L                          

                                                                (3.31) 
Taking inverse Laplace transform of equation (3.31) 
with respect to y, we get 

u(x, y) = y + L L L L                                                             

                                                               (3.32) 
From section (2), we know that in LSM, we represent 
solution in infinite series form . Letwe suppose that 
u(x, y) = u (x, y)      (3.33) 
be the required solution of given equation (3.27). The 
nonlinear term appear in equation(3.27), we can 
decompose it by using Adomian polynomial defined 
by the equation (2.11) 

= A                                        (3.34) 

Where An is an Adomian polynomial of components 
u0, u1, u2, ……………..un. Let we find the few Adomian 
polynomials, 
 
A0 = u2

0y,A1 = 2u0yu1y, A2 = 2u0yu2y + u2
1y,    

……………………………………………. 
From equations (3.32), (3.33) and (3.34), we get 

u (x, y) =y + L L L L [ A ]                       

(3.35) 
Comparing on both sides of above equation, we get a 
recursive relation 
u0(x, y) =  y, 

u (x, y) = L L L L [A ] (3.37) 

From the above recursive relation, we get the 
following few components of u(x, y) 
u (x, y) = y, u (x, y) = xy, u (x, y) = x y, u (x, y) =

x y………………………………  
and so on. Thus the solution of give equation (3.27) 
is, 
u(x, y) = u (x, y) + u (x, y) + u (x, y) + u (x, y) +

………………………………  
u(x, y) = y + xy + x y + x + …… 
u(x, y) = y x                                           (3.38) 
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This is the solution of given equation (3.27).  Which is 
convergent only when |x| < 1. Thus the equation 
(3.27) has a convergent and exact solution 

u(x, y) =   ,    |x| < 0                                (3.39) 

Which can be verifying through the substitution? 
Example 3: Consider the following nonlinear non-
homogeneous partial differential equation with R(x; 
y)  

+ = 1                (3. 40) 

 
u(x, 0) = 0 ,   uy(0, y) = 0                 (3.41) 
Above equation (3.240) we can write in the form 
of u + u = 1. Let we use the substitution 
( , )

= U(x, y) in equation (3.40), we get 

+U = 1     (3.42) 

This is the first order nonlinear partial differential 
equation with initial condition U (0, y) = 0.Taking 
Laplace transform on both sides of equation (3.42) 
with respect to x, we get 
 
sU(s, y) U(0, y) = L [1 U ] 

U(s, y) = L [U ] since  U(0, y) = 0                                

                                                                   (3.43) 
Taking inverse Laplace transform of above equation 
on both sides with respect to x, we get 
 

U(s, y) = x L L [U ]                       (3.44) 

= x L L                            (3.45) 

Taking Laplace transform on both sides of equation 
(3.45) with respect to y, we get 

u(x, s) = L L L          (3.46) 

Taking inverse Laplace transform of equation (3.46) 
with respect to y, we get 
 

u(x, y) = yx L L L L                                                

                                                                    (3.47) 
From section (2), we know that in LSM, we represent 
solution in infinite series form.  Let we suppose that 
 
u(x, y) = u (x, y)  (3.48) 

be the required solution of given equation (3.40). The 
nonlinear term appear in equation(3.27), we can 
decompose it by using Adomian polynomial defined 
by the equation (2.11) 

= A                                   (3.49) 

Where An is an Adomian polynomial of u0, u1, u2... 
un. The Adomian polynomial An is defined by 
equation (2.11). We have calculated the few Adomian 
polynomials in example2. From equations (3.47), 
(3.48) and (3.49), we get 

u (x, y) =xy L L L L [ A ]              

(3. 50) 
Comparing on both sides of above equation, we get a 
recursive relation 
u0(x, y) = xy  ,  

u (x, y) = L L L L [A ] , n 0                                     

                                                                  (3.51) 
From this recursive relation we get the following 
components of u(x,y) 

u (x, y) = xy , u (x, y) = , u (x, y) = ,

u (x, y) = , ………………….  

and so on. Put all the values of un(x; y); n _ 0 in 
equation (3.48), we get 

u(x, y) = xy + + …                                                

                                                                     (3.52)  
u(x, y) = y tanhx                                                                                        
                                                            (3.53) 
This is the required exact solution of equation (3.40). 
Which can be verify through the substitution. 
Conclusion: In this paper, we successfully apply the 
proposed Laplace Substitution Method (LSM) to 
solve linear and nonlinear homogeneous , non-
homogeneous partial differential equations in which 
involves mixed partial derivatives with general linear 
term is either Ru(x, y) = 0 or Ru(x, y) 
comparison with the existing method to obtain the 
exact solution our (LSM) find the exact solution with 
less computation. One more advantage of this 
method is that it gives the solution in series form. In 
the future, we plan to generalize our method to apply 
for the higher order nonlinear partial differential 
equations involving mixed partial derivatives in 
nonlinear terms. 
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