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Abstract: I n this paper we are consider unsteady pulsatile flow of blood through porous medium in an artery 
has been studied under the influence of periodic body acceleration in the presence of magnetic field, acting 
along the radius of the pipe, considering blood as an electrically conducting, incompressible and elastico-
viscous fluid. An analytical solution of the equation of motion is obtained by applying the Laplace transform. 
The effects of elastico-viscosity parameter of the blood, magnetic field, porous medium and body acceleration 
have been discussed. The obtained results, for different values of parameters into the problem under 
consideration, shows that the flow is appreciably influenced by the elastico-viscosity parameter of the blood, 
the permeability parameter of porous medium, Hartmann number of magnetic field and frequency of periodic 
body acceleration. The study is useful for evaluating the role of porosity and elastico-viscosity parameter when 
the body is subjected to magnetic resonance imaging (MRI).  
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Introduction: Physiological fluid dynamics is 
relatively new area that deals with the fluid dynamics 
of biological fluids.The investigations of blood flow 
through arteries are of considerable importance in 
many cardiovascular diseases particularly 
atherosclerosis 
It is mainly characterized by its porosity, ratio of the 
void space to the total volume of the medium. Earlier 
studies in flow in porous media have revealed the 
Darcy law which relates linearly the flow velocity to 
the pressure gradient across the porous medium. The 
porous medium is also characterized by its 
permeability which is a measure of the flow 
conductivity in the porous medium. 
In the present paper, the effect of elastico-viscosity 
parameter on unsteady blood flow through a porous 
medium has been studied under the influence of 
periodic body acceleration and an external magnetic 
field. The analysis is carried out by employing 
appropriate analytical methods and some important 
predictions have been made basing upon the study. 
This investigation can play a vital role in the 
determination of axial velocity, shear stress and fluid 
acceleration in particular situations. Since this study 
has been carried out for a situation when the human 
body is subjected to an external magnetic field, it 
bears the promise of significant application in 
magnetic or electromagnetic therapy, which has 
gained enough popularity. The study is also useful for 
evaluating the role of porosity and elastico-viscosity 
when the body is subjected to magnetic resonance 
imaging (MRI). The main idea of our work is the 
mathematical study of these phenomena in order to 
obtain analytical expression for the axial velocity and 
fluid acceleration 

Mathematical Model: In the cardiovascular system, 
the motion of the blood is given by a local pressure 
gradient along the longitudinal direction of the 
vessel, which in turn is determined by the 
propagation of the heart pressure pulse. It is worth 
noting that the pressure, being essentially periodic, 
can be subjected to Fourier series analysis. Therefore, 
for the sake of simplicity, it is assumed that the 
pressure gradient is known as a function of time. 
Consider the unsteady pulsatile flow of blood, as an 
elastico-viscous fluid, in an axi-symmetric cylindrical 
artery of radius R  through porous medium with 
body acceleration. The fluid is subjected to a constant 
magnetic field acts perpendicular to the artery. We 
assume that the magnetic Reynolds number of the 
flow is taken to be small enough, so that the induced 
magnetic field and electric field can be neglected. The 
cylindrical coordinate system ( , , )r z  are 
introduced with z-axis lies along the center of the 
artery and r transverse to it. The pressure gradient 
and body acceleration are respectively given by[36]: 

1 cos( ), 0,o p

p
A A t t

z
  (1) 

cos( ), 0,o bG a t t     (2) 

Where 1oA and A are pressure gradient of steady 

flow and amplitude of oscillatory part respectively, 

oa is the amplitude of the body acceleration, 

2 , 2p p b bf f  with pf is the pulse 

frequency and bf is the body acceleration frequency 

and t  is time.  
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Fig. 1 Geometrical diagram for the flow 

geometry 
 
The governing equation of the motion for flow in 
cylindrical polar coordinates is given by 

2
1 1

1u p
u G u J B

t z t k t
  

                                               (3) 
Maxwell's equations are 

. 0 , ,o

B
B B J E

t

        (4) 

Ohm's law 
J E V B                            (5)                                                                                       

Where (0,0, )V u  is the velocity distribution, 

the blood density, o magnetic permeability, 

0, ,0oB B  the magnetic field, E the electric 

field, J the current density, k is the permeability 
parameter of porous medium,  is the dynamic 

viscosity of the blood, 1 is the elastico-viscosity 

coefficient of the blood and is the electric 
conductivity of the blood. For small magnetic 
Reynolds number, the linearlized 

magnetohydrodynamic force J B can be put into 
the form 

2
OJ B B u                  (6) 

Where ( , )u r t  denote the axial velocity of the blood. 
Under the above assumptions the equation of motion 
is 

2

1 1 2
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                                                             (8)           
The boundary conditions are: 

(0, )u t is finite at 0r               (9.a) 

( , ) 0,u R t   (No slip condition) (9-b) 
Let us introduce the following dimensionless 
quantities:  

* * * *

* * * *
1 1 2

, , , ,

, , , ,
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The Hartmann number Ha , the Womersley 
parameter  and the elastico-viscosity parameter of 
the blood  are defined by respectively 

1, ,oH a B R R a n d

 
In terms of these variables equations (8) and (9) can 
be rewritten in the non-dimensional form after 
dropping the stars as 
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                                                                   (10)               
Also the boundary conditions are 

( 0 , )
0

u t
r

( (0, )u t is finite at 0)r        (11.a) 

 

(1, ) 0u t                                                 (11-b) 
And the initial condition is 

( , 0) 1 ( 0)ou r u u at t    (11-c) 

3.  Solution of the problem: Applying Laplace 
Transform to equation (10), we get                                              
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(12) 
Where 

*

0
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Substituting by the I.C. equation (11-c) into equation 
(12) and dropping the pars, we get 

2
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                                                                 (13)                                                                                                
Where 
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(14.a)                                                                
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(14.b)                
Homogenous solution: 

2
2 2 2

2
0

d u d u
r r r u

d r d r
 

This equation is modified Bessel differential equation 
so the solution is 
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1 2( ) ( )h O Ou C I r C K r  

Where O OI Kand are modified Bessel functions of 

order zero. Since the solution is bounded at 0r , 

then the constant 2C equals zero, then 

1 ( )h Ou C I r                     (15) 

We can get the particular solution using the 
undetermined coefficients as the following 
 

1 2pu r   
2

2 2, 0p pd u d u

d r d r
 

Substituting into equation (13) and comparing the 

coefficients of 2r and r we get 

2pu                      (16)                                                                                                          

The general solution is 

1 2
( )g h p Ou u u C I r

 
    (17) 

Substituting from equation (11-b) into equation (17) to 

calculate the constant 1C  we get 

1 2

1
( )o
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Then the general solution can obtained on the form 
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For the sake of analysis, the part ( )
1

( )
O

O

I r
I

 

which represents an infinite convergent series as its 
limit tends to zero when r tends to one has been 
approximated [28-29].  
The final form of the general solution as a function of 
r and s is 
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                                                              (19) 
Rearranging the terms and taking the inversion of 
Laplace Transform of equation (19) which gives the 
final solution as: 
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The expression for the fluid acceleration is given by: 

( , )
u

F r t
t             

(21)  

Differentiating Eq. (20) with respect to t we can get 
the expression for fluid acceleration as follows: 
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Where: 
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4.   Numerical results and discussion:  The results 
have been numerical worked out for different 
combinations of parameters involved in the solution. 
We had shown the relation between the different 

parameters of motion such as Hartmann number Ha, 
elastico-viscosity parameter of the blood , 
Womersley parameter , frequency of the body 
acceleration b, the permeability parameter of porous 
medium k and the axial velocity, fluid acceleration to 
investigate the effect of changing these parameters on 
the flow of the fluid. Hence, we can be controlling the 
process of flow[40].It is observed that from Fig. 2 that 
as the elastico-viscosity parameter of the blood  
increases the amplitude of the axial velocity 
decreases, this means that decreasing of the effect of 
pulsates on the velocity profile. 
 

 
 

         
Fig. 2  Effect of elastico-viscosity parameter  on the axial velocity 

At 1, 1, 1, 1, 1, 0, 1.0 0.51Ha a A A r b and ko o  

 

 
Fig. 3   The effect of Hartmann number Ha on the axial velocity 

1, 1, 1, 1, 1, 0, 1.0 0.51a A A r b and ko o  

 
 Fig. 3 shows that by increasing the Hartmann 
number the amplitude of the axial velocity decreases 
like the effect of the elastico-viscosity parameter of 
the blood   which damp the velocity. While the 

amplitude of the velocity increases by increasing the 
permeability parameter of porous medium as shown 
in Fig 4.  
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Fig. 4   The effect of permeability parameter k of porous medium on the axial velocity at 

1, 1, 1, 1, 1, 0, 1.0 1.01a A A r b and Hao o  

 
 

 
Fig. 5   The effect of Womersley parameter  on the axial velocity at 

1, 1, 1, 1, 1, 0, 1.0 1.01k a A A r b and Hao o  

 
Fig. 5 shows the effect of Womersley parameter on 
the distribution of the axial velocity. The dependence 

of the axial velocity on the frequency of body 
acceleration is considered in Fig. 6. 

 

 
 
Fig. 6   The effect of frequency of body acceleration b on the axial velocity 

at 1, 1, 1, 1, 1, 0, 1.0 1.01k a A A r and Hao o
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Fig. 7   The effect of elastico-viscosity parameter  on the fluid acceleration at 

1, 1, 1, 1, 1, 0, 1.0 1.01k b a A A r and Hao o  

 
 

 
 

Fig. 8   The effect of permeability parameter of porous medium on the fluid acceleration 

at 1, 1, 1, 1, 1, 0, 1.0 1.01b a A A r and Hao o
 

 
        Fig. 9   The effect of Hartmann number on the fluid acceleration 

          at 1, 1, 1, 1, 1, 0, 1.0 1.01b a A A r and Hao o  
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Fig. 10   The effect of Womersley parameter on the fluid acceleration 

at 1, 1, 1, 1, 1, 0, 1.0 1.01b a A A r k and Hao o  

 
It is observed form Fig. 8 that the amplitude of the 
blood acceleration increases with increasing the 
permeability parameter of porous medium k while 
the amplitude of the acceleration wave decreases 
with increasing the Hartmann number Ha as shown 
in Fig. 9. The amplitude of the blood acceleration 
decreases with increasing of Womersley parameter  
as shown in Fig. 10. 
Conclusions:  This investigation can play a vital role 
in the determination of axial velocity, shear stress and 
fluid acceleration in particular. The study is also 
useful for evaluating the role of porosity and elastico-
viscosity when the body is subjected to magnetic 
resonance imaging (MRI). We can conclude the 
following remarks: 

1. For the axial velocity, it is of interest to note 
that the amplitude of the axial velocity, amplitude 
of blood acceleration increases with increasing of 
the permeability parameter of porous medium k. 
whereas it decreases with increasing the 
Hartmann number, elastico-viscosity parameter 

 and Womersley parameter .  
2. The present model gives a most general form 
of velocity expression from which the other 
mathematical models can easily be obtained by 

proper substitutions. It is of interest to note tha t 
the result of the present model includes results of 
different mathematical models such as: 
 The results of Megahed et al [1] have been 

recovered by taking elastico-viscosity parameter 
0.0.  

 The results of Kamel and El-Tawil [2] have 
been recovered by taking elastico-viscosity 
parameter 0.0, the permeability of porous 
medium k  without stochastic and no body 

acceleration. 
 The results of Elshahed [4] have been 

recoverd by taking elastico-viscosity parameter
0.0. and Hartmann number Ha=0.0 (there is 

no magnetic field). 
 The results of Chaturani and Palanisamy [7] 

have been recovered by taking elastico-viscosity 
parameter , the permeability of porous medium 
k  and Hartmann number Ha=0.0 (no 

magnetic field). 
 The results of Elshehwey et al [6] have been 

recoverd by taking the permeability of porous 
medium  k . 
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