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Abstract: In this paper, properties of fuzzy measure on locally compact hausdorff space under the null-additivity
condition, and the properties of the inner/outer regularity and the regularity of fuzzy measure are investigated.
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Introduction: The well-known Lusin’s theorem in
classical measure theory is very important and useful for
discussing the continuity and the approximation of
measurable function on metric spaces are investigated in
[1,2]. Li [1] investigated the regularity of null-additive
fuzzy measure on metric spaces and showed Lusin’s
theorem on fuzzy measure space under the null-additivity
condition. we assume that X is a locally compact
hausdorff space.and that V,F,K are classes of all open
,closed and compact set in X respectively and [ is a
positive fuzzy measure. B denotes borel ¢ - algebra on X,
it is the smallest ¢ algebra containing V. In this paper,
properties of null-additive fuzzy measure locally compact
hausdorff space under the null-additivity condition, some
properties of the inner/outer regularity and the regularity
of fuzzy measure are investigated.
Definition: 1.1: A fuzzy measure p on (X,B) is an
extended real valued set function p :F—[0,00] satisfying
the following conditions.
) w(9)=0
ii) WA)<W(B) whenever AcB and A,BeF
Definition: 1.2: A fuzzy measure p is called null-
additive,if W(EUF)=W(E) whenever E.,FeB and W(F)=0.
Definition:1.3: A fuzzy measure | is called outer
regular if pW(E)=inf {u(V)\ VoE,V open.}
Definition:1.4: A fuzzy measure | is called inner
regular.if W(E)=sup{W(F)\FCE,F closed}
=sup{ WK)\ KcE,K compact}
Definition: 1.5: X is locally compact if every point of x
has a neighbourhood whose closure is compact.
Definition: 1.6: A set E in X is called o-compact if E is
a countable union of compact sets.
2. Main Results:
Theorem:2.1: Let X is a locally compact ,6-compact,
hausdorff spaces, p is describe as in the statement of
Definition: 1.3 & 1.4, then the following statements of the
set E € B are equivalent.
a) If EeB and € > 0 there is a closed set F and an open
set V such that FCEcV and  p(V-F)<E€.
b) u is regular on X.
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c¢) If EeB, there are sets A and B such that A is an F,,B
is an Gs AcCEcB and pu(B-A)=0.

Proof: To Prove: (b)=>(a)

Since X is o-compact,we have X=K; UK, U

each K, is compact.

Let E eB and £€>0 Since every c-compact set has o-finite

measure,we have E=uU (ENK,, ),

H(ENKn)<oo,for all n

Hence, there exist an open set V, containing ENK,

suchthat

u(V,-(ENK,))<€2™ n=1,2,...

By the Definition of inner regularity,

W(E)=inf{u(V),VoE,V Open} we have,

HOV)<p(E)+E

= u(V)-u(E)<E

Let V=UVn is an open set.

Then V-Ecu(V,-(ENK,))

Hence, u(V-E)<Y u(V.-(ENK,) <Y, €/2™'=¢/2

Thus W(V-E)<€/2....cccoviiiiiiiiiiin. (D

Take E%,and apply the above argument to E° in place of

E.,there is an open set WOE® Suchthat

u(W-E9<€/2

But W-E°=E-W* And W cE

Take F=W°* then FCE and E-F= W-E°

Hence u(E-F)<€/2,

V-Fc(V-E)U(E-F)

L(V-F)<u(V-E)+u(E-F) <€/2+&/2 u(V-F)<€&

To Prove: (a)=>(b):

If F is a closed in X,then F=U(K,NF),Each K,NF is

compact U(K,NF)=UK,NF=XNF=F

Hence, p((K;UK,u...UK)NF)—u(F) as n—oo (ie) u(F)

is the sup of pu(E) p(E)=Sup{u(F),FcE,F is closed}

= u is regular

To prove: (a)=> (¢):  For any positive integer j,there

exist a closed set F; and open set V; such that

Ajis an F; set,B is G s set and ACECB,BcV;and FoA

for all j

Therefore B-ACVj-Fju(B-A)<u(V-F)<1//€; for allj , as

j—oou(B-A)—0 Hence the proof.

...where
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