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Abstract: In this paper,  properties of fuzzy measure on  locally compact hausdorff space under the null-additivity 

condition, and the properties of the inner/outer regularity and the regularity of fuzzy measure are investigated. 
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Introduction: The well-known Lusin’s theorem in 

classical measure theory is very important and useful for 

discussing the continuity and the approximation of 

measurable function on metric spaces are investigated in 

[1,2].  Li [1] investigated the regularity of null-additive 

fuzzy measure on metric spaces and showed Lusin’s 

theorem on fuzzy measure space under the null-additivity 

condition. we assume that X is a locally compact 

hausdorff space.and that V,F,K are classes of all open 

,closed and compact set in X respectively and µ is a 

positive fuzzy measure. B denotes borel σ - algebra on X, 

it is the smallest σ algebra containing V.  In this paper, 

properties of null-additive fuzzy measure locally compact 

hausdorff space under the null-additivity condition, some 

properties of the inner/outer regularity and the regularity 

of fuzzy measure are investigated. 

Definition: 1.1: A fuzzy measure µ on (X,B) is an 

extended real valued set function µ :F→[0,
] satisfying 

the following conditions. 

i) µ(φ)=0 

ii) µ(A)�µ(B) whenever A⊂B and A,B∈F 

Definition: 1.2: A fuzzy measure µ is called null-

additive,if µ(E∪F)=µ(E) whenever E,F∈B and   µ(F)=0. 

Definition:1.3: A fuzzy measure µ is called outer 

regular if  µ(E)=inf {µ(V)\ V⊃E,V open.} 

Definition:1.4: A fuzzy measure µ is called inner 

regular.if µ(E)=sup{µ(F)\F⊂E,F closed} 

 =sup{µ(K)\ K⊂E,K compact} 

Definition: 1.5:   X is locally compact if every point of x  

has a neighbourhood whose closure is        compact. 

Definition: 1.6:   A set E in X is called σ-compact if E is 

a countable union of compact sets. 

2. Main Results: 

Theorem:2.1:  Let X is a locally compact ,�-compact, 

hausdorff spaces, µ is describe as in the statement of 

Definition: 1.3 & 1.4, then the following statements of the 

set E ∈ B  are equivalent. 

a) If E ∈B  and �  > 0 there is a closed set F and an open 

set V such that F⊂E⊂V and      µ(V-F)<�. 

b) µ is regular on X. 

c) If E∈B, there are sets A and B such that A is an F�,B 

is an G�  A⊂E⊂B and µ(B-A)=0. 

Proof: To Prove: (b)=>(a) 

Since X is �-compact,we have  X=K1 ∪K2 ∪   …where 

each Kn is compact. 

Let E ∈B  and �>0 Since every �-compact set has �-finite 

measure,we have  E= ∪ (E�Kn ),      

µ(E�Kn)<
,for all n 

Hence, there exist an open set Vn containing  E�Kn   

suchthat   

µ(Vn-(E�Kn))<�/2
n+1

,n=1,2,…  

By the Definition of  inner regularity, 

 µ(E)=inf{µ(V),V⊃E,V Open} we have,  

 µ(V)<µ(E)+� 

� µ(V)-µ(E)<�   

Let V=∪Vn is an open set. 

Then V-E⊂∪(Vn-(E�Kn))   

Hence,    µ(V-E)�� µ(Vn-(E�Kn)) <� �/2
n+1

=�/2 

Thus µ(V-E)<�/2………………………(1) 

Take E
c
,and apply the above argument to E

c 
 in place of 

E,there is an open set W⊃E
c
 Suchthat   

µ(W-E
c
)<�/2   

But W-E
c
=E-W

c
 And W

c 
 ⊂E   

Take F=W
c
  then F⊂E  and  E-F= W-E

c 

Hence µ(E-F)<�/2,  

V-F⊂(V-E)∪(E-F)  

µ(V-F)<µ(V-E)+µ(E-F) <�/2+�/2 µ(V-F)<� 

To Prove: (a)=>(b):  

If F is a closed in X,then   F=∪(Kn�F),Each Kn�F is 

compact   ∪(Kn�F)=∪Kn�F=X�F=F 

Hence, µ((K1∪K2∪…∪Kn)�F)�µ(F)  as n�
 (ie) µ(F) 

is the sup of µ(E) µ(E)=Sup{µ(F),F⊂E,F is closed} 

� µ is regular    

To prove: (a)=> (c):    For any positive integer j,there 

exist a closed set Fj and open set Vj such that 

Fj⊂E⊂Vj and µ(Vj-Fj)<1/�j   A=∪Fj and B=�Vj 

A is an F� set,B is G � set and A⊂E⊂B,B⊂Vj and Fj⊃A  

for all j 

Therefore B-A⊂Vj-Fjµ(B-A)�µ(Vj-Fj)<1//�j   for allj ,  as 

j�
µ(B-A)�0 Hence the proof. 
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