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Abstract: In this Paper, we generalize Rees and Stanojevic modified cosine sums by introducing a 
new fuzzy modified cosine sums with fuzzy coefficients and obtain the necessary and sufficient 

condition for the 1L -convergence of these sums. 
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Introduction: Fourier Analysis is a powerful 
tool for solving many problems and especially 
for solving various differential equations of 
interest in science and engineering. The 
computation and study of Fourier Analysis is 
known as Harmonic Analysis. It is extremely 
useful in approximation theory, partial 
differential equation and probability theory etc. 
During Literature survey, we found that many 
authors like C.S Rees and C.V. Stanojevic [2], S. 
Kumari and B. Ram [20], N. Hooda, S.S. Bhatia 
and B. Ram [16], K. Kaur, S.S. Bhatia and B. Ram 
[6], J. Kaur and S.S. Bhatia ([4],[5]), N.L. Braha 
and Xh. Z. Krasniqi [15] introduced new 
modified trigonometric sums, as these sums 
approximate their limits better than the classical 
trigonometric series in the sense that these sums 

converge in 1L -metric to the sum of 
trigonometric series whereas the classical series 
itself may not. 
  The development of fuzzy theory gave an idea 
to extend the classical results in Harmonic 
Analysis to Fuzzy Analysis. To establish the 
connection between the Fourier series and 
Fourier series of fuzzy valued function with the 
level sets, we studied the basic concepts of fuzzy 
theory which have been modified and improved 
by various authors such as L.A. Zadeh [9], O. 
Kaleva [17], M. Puri and D. Ralescu ([7],[8]),       
M. Stojakovic ([10],[11],[12]), M. Stojakovic and Z. 

Stojakovic ([13],[14]), D. Zhang nd C. Guo [3], O&& . 
Talo and F. Basar [18] and so on. In 2014, U. 
Kadak and F. Basar [22] have represented the 
interval valued fuzzy sets in terms of its level 
sets and also studied the Fourier series of 
periodic fuzzy valued functions with level sets 
and examined the convergence of Fourier series 
of fuzzy valued function. Recently S. Kaur and J. 
Kaur [21] introduced new classes of fuzzy 
coefficients  and obtained the necessary and 

sufficient conditions for 1L -convergence of 
fuzzy trigonometric series. 
 The aim of this paper to introduce a new fuzzy 
modified cosine sums with fuzzy coefficients and 
obtain a necessary and sufficient condition for 

1L -convergence of this modified sum. 
 
2. Preliminaries and Background: In this 
section, we recall some of the basic notions 
related to fuzzy numbers. 
 
Definition 2.1. [9] A fuzzy number is a fuzzy set 
on the real axis, i.e., a mapping ]1,0[: ®Ru  

which satisfies the following four conditions: 

i. u  is normal, i.e., there exists an Rx Î0  such 

that 1)( 0 =xu . 

ii. u  is fuzzy convex, i.e., 
)}(),(min{])1([ yuxuyxu ³-+ ll  for all 

Ryx Î,  and for all ]1,0[Îl . 

iii. u  is upper semi-continuous. 

iv. The set }0)(:{][ 0 >Î= xuRxu  is compact, 

where }0)(:{ >Î xuRx  denotes the closure of 

the set })(:{ 0>Î xuRx  in the usual topology 

of R . 

we denote the set of all fuzzy numbers on R  by 
1E  and called it as the space of fuzzy numbers 

l -level set l][u of 1EuÎ  is defined by    
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The set l][u  is closed, bounded and non-empty 

interval for each ],[ 10Îl  which      is defined by 

],[][
+-= lll uuu . R  can be embedded in 1E , 
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since each Rr Î  can be regarded as a fuzzy 
number r  defined by    
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Theorem 2.2. [19] (Goetschel and voxman) For 

1EuÎ , denote 
-- = ll uu )(  and 

++ = ll uu )( . 

Then 

i. )(l-u  is a bounded increasing function on ],[ 10 . 

ii. )(l+u  is a bounded decreasing function on ],[ 10

. 

iii. )()( ll +- £ uu . 

iv. )(l-u  and )(l+u  are left continuous on ],( 10  

and right continuous at 0. 

v. If )(l-u  and )(l+u  satisfy (i-iv), then there 

exist a unique 1EvÎ  such that )(ll
-- = uv  and 

)(ll
++ = uv . 

The above theorem implies that we can identify 
a fuzzy number u  with the parameterized 
representation  

                }|),{( 10 ££+- lll uu  

Suppose that 
1Evu Î,  are fuzzy numbers 

represented by }|),{( 10 ££+- lll uu  and 

}|),{( 10 ££+- lll vv  respectively. If we define  

    ))(),(min(sup))(( yvxuzvu
zyx =+

=Å      (2.1)      
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then  
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we define a metric d on 1E  by 

        )][,]([sup),(
10

ll
l

vudvud H
££

=          (2.3) 

where Hd  is the hausdorff metric defined as 

|)||,max(|)][,]([ ++-- --= llllll vuvuvudH              

                                                                (2.4) 

Also, )0
~

,(ud  will be denoted by u . 

Definition 2.3. [18] A sequence }{ ku  of fuzzy 

numbers is a function u  from the set N  into 

the set 1E . The fuzzy number }{ ku  denotes the 

value of the function at Nk Î  
and is called as the general term of the sequence. 
By )(Fw , we denote the set of all sequences of 

fuzzy numbers. 

Definition 2.4.[18] A sequence )(}{ Fwun Î  

is called convergent with limit 1EuÎ , if and 

only if for every 0Î>  there exists an 

Nnn ÎÎ= )(0  such that <Î),( uuD n  for all 

0nn ³ . 

Definition 2.5.[21] A sequence )(}{ Fwun Î  is 

said to be decreasing sequence if kk uu p1+  i.e. 
-

+
- < ll )()( 1kk uu  and 

+
+

+ > ll )()( 1kk uu  

Remark 2.6. If }{ ku  is a decreasing fuzzy 

sequence, then it can be easily seen          that 
--

+
-- D=-=D llll )()()()( 1 kkkk uuuu  and 

++
+

++ D=-=D llll )()()()( 1 kkkk uuuu . 

Definition 2.7.[21] A sequence )(}{ Fwun Î   is 

said to be fuzzy null sequence if l]0[lim =
¥® k

k
u  

with respect to the level sets. i.e.

( ){ }100)(lim,0)(lim ££== ++
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                                                              (2.5) 
Definition 2.8.[21] A decreasing sequence  

)(}{ Fwun Î  is said to belong to class BV(F) 

with respect to the level set if (2.5) is satisfied 

and the series å
¥

=Å

D
0k

ku  is convergent. 

 
3. Main Result: 
 we introduce here a fuzzy modified cosine sums 
with fuzzy coefficients as 

å å
=Å =Å

=D=
n

k

n

kj

j

t

n ukxuxg
1

0 )0(cos)(  

                                                                (3.1) where 

1+Q=D kkk uuu   

 and obtained  1L - convergence of )(xg tn  to the 

fuzzy valued function )(xf t . 
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Theorem 3.1. If }{ ku  be a sequence of fuzzy 

coefficients belonging to class BV(F), then )(xg tn  

converges to fuzzy valued function )(xf t  in 1L -

norm if and only if 

{ }10]0[loglim ££=
¥®

llnun
n

. 

Proof. Consider,  

å å
=Å =Å

D=
n

k

n

kj

j

t

n kxuxg
1

cos)(  

                  

         

ï
ï

þ

ï
ï

ý

ü

ï
ï

î

ï
ï

í

ì

££

÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç

è

æ

D

D

=

åå

åå

= =

+

= =

-

10

,cos)(

,cos)(

1

1
l

l

l

n

k

n

kj

j

n

k

n

kj

j

kxu

kxu

 

Since }{ ku  is a fuzzy decreasing sequence, 

Therefore 
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First  consider,  
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Apply Abel's transformation, we get 
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Since )(xDn  is bounded in ),0( p  and by given 

hypothesis  ¥<1I . 

Similarly ¥<2I . 

Hence )()(lim xfxg tt

n
n

=
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 exists in ).,0( p  

Now, we consider 
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Apply Abel's transformation, we have 
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Similarly, 
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Since (see e.g. [1], Vol I, p. 67)      
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{ }10]0[loglim ££=
¥®

llnun
n

. 

Hence the conclusion of main results follows. 

Remark 3.2 If 
+- = ll )()( kk uu  in above theorem 

then the sequence }{ ku  of fuzzy numbers 

becomes the sequence of real numbers. 
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