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Abstract: In this paper some new classes of analytic functions, its subclasses are introduced. We also 
obtain sharp upper bounds of the function µ  for the analytic function 
∞  belonging to these classes and subclasses. 
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Introduction : Let  denote the class of 
functions of the form 

∞   (1.1) 
which are analytic in the unit disc 

. Let  be the class of functions of the form 
(1.1), which are analytic univalent in .  
In 1916, Bieber Bach ( [7], [8] ) proved that 

 for the functions Î . In 1923, 
Löwner [5] proved that  for the functions 

Î ..  
        With the known estimates  and 

, it was natural to seek some relation 
between  and  for the class , Fekete and 
Szegö[9] used Löwner’s method to prove the 
following   well known result for the class .  
         Let Î , then 

µ

µ µ
µ

µ
µ

µ µ

 

                                                   (1.2) 
The inequality (1.2) plays a very important role 
in determining estimates of higher coefficients 
for some sub classes  (See Chichra[1], 
Babalola[6]). 
Let us define some subclasses of . 
We denote by S*, the class of univalent starlike 
functions  

∞

 

                (1.3) 

         We denote by , the class of univalent 
convex functions 

∞

 
ʹ

ʹ
    (1.4) 

A function  is said to be close to convex 
if there exists  such that  

ʹ
    (1.5) 

The class of close to convex functions is denoted 
by C and was introduced by Kaplan [3] and it 
was shown by him that all close to convex 
functions are univalent. 

ʹ

                                            (1.6) 
ʹ

ʹ

ʹ

                                         (1.7)     

It is obvious that  is a subclass of  and 
 is a subclass of .  

In this paper, we establish Fekete-Szegö 
Inequality for the following subclass of a new 

class ʹ defined as 
ʹ ʹ

 

and we will denote this class as ʹ  

Symbol  stands for subordination, which we 
define as follows: 
Principle of Subordination: Let  and  
be two functions analytic in . Then  is 
called subordinate to F(z) in  if there exists a 
function  analytic in  satisfying the 
conditions and  such that 

Î  and we write 
 

By , we denote the class of analytic bounded 
functions of the form  

∞   
(1.8) 
It is known that 

    (1.9) 
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Preliminary Lemmas:          

For , we write   so that 

                                                                    

(2.1) 
3. Main Results 
THEOREM 3.1: Let ʹ , then 

  

The results are sharp. 

PROOF: By definition of ʹ , we have 
ʹ ʹ

 
 Expanding the series (3.4), we get  

                                                                                              
(3.5)                                                                                               
Comparing terms in (3.5), we get 

                                               (3.6)                                                                                              

                                                  

(3.7)                                                         From (3.6) 
and (3.7), we obtain 

                                                                    

(3.8) 
Taking absolute value, (3.8) can be rewritten as 

 | 

}                                                               (3.9) 

CASE I:  ,then (3.9) can be rewritten as 

                                                        (3.10) 

SUBCASE I (A): using (1.9), (3.10) 

becomes 

}                                                                           

(3.11) 

SUBCASE I (B):          

            (3.12)                

CASE II:      then (3.9) can be rewritten 

as  

                                                           (3.13)               

SUBCASE II (A):   then from equation 

(3.13) we get  

or   ≤                                                                                                                  

(3.14)        

SUBCASE II (B):   then from equation 

(3.13) we get   

   

or     {                                                                                  

(3.15)        
Combining subcase I(b) and subcase II(a), we 
obtain 

                                                                                 

(3.16) 
Combining (3.12), (3.14) , (3.15)  and (3.16), the 
theorem is proved. 
Extremal function for (3.1) and (3.3) is defined by 

 where 

 
Extremal function for (3.2) is defined by   
where 

 
Corollary 3.2:  Putting  in the 
theorem, we get  

 

These are the results for the class  
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