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ON 2-ABSORBING AND WEAKLY 2-ABSORBING IDEALS OF LATTICES
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Abstract: In this paper, we introduce 2-absorbing and weakly 2-absorbing ideals in lattices. We study their
properties such as every 2-absorbing ideal of a lattice with zero is weakly 2-absorbing ideal. We define the
triple zero in lattices and give some results related triple zero. Examples and counter examples are given

wherever required.
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Introduction: Ideals were first proposed by Richard
Dedekind in 1876 in the third edition of his book
Vorlesungen ber Zahlentheorie (English: Lectures on
Number Theory). This was a generalization of the
concept of ideal numbers developed by Emst
Kummer. Later this concept was expanded by David
Hilbert and especially Emmy Noether.

In 2003 Anderson and Smith [2], defined a weakly
prime ideal in a commutative ring R, that is a proper
ideal Pof Rwith the property that, if whenever
a,b € R,0 # ab € Pimplies either a € Por b € P.
Badawi [5] in 2007 defined a proper ideal lof a
commutative ring Rto be a 2-absorbing ideal, if
whenever abc € Ifor a,b,c € R, then either ab € lor
bc € lor ac € I. Later this concept was generalized by
Anderson and Badawi [3], Payroviand Babaei [12],
Azizi [4], Badawi and Darani [6] and Chaudhari [9].
In this paper we introduce the concepts of 2-
absorbing and weakly 2-absorbing ideals in lattices. A
proper ideal lof a lattice Lis called 2-absorbing if
whenever aAbAc €l for a,b,c €L, then either
aAb€lor anc €lorbAc€l. A proper ideal lof a
lattice Lwith zero is called weakly 2-absorbing if
whenever 0 £ aAb Ac €1 for a,b,c € L, then either
aAb€lor aNc€lorbAc €l

In Section 2, we study some basic properties of prime
ideals, weakly prime ideals, 2-absorbing and weakly
2-absorbing ideals in lattices and give some examples.
In Section 3, we study the concepts of a triple zero
and derive some related results. Let /be a weakly 2-
absorbing ideal of a lattice Lwith zero and a,b,c € L.
We say that (a, b, ¢) is a triple-zero of Iif a Ab A c =
O,thenaAbé&l,ancé&landbAc &1.

We assume throughout that all lattices are lattices
with zero.

2. Basic Properties of 2-absorbing and Weakly 2-
absorbing Ideals in Lattices: We recall some
concepts from the lattice theory, see Gratzer [10].
Definition 1: A set Pwith a binary relation ‘<’ is
called partially ordered set or poset if <is reflexive,
transitive and antisymmetric.

Definition 2: A supremum (resp. infimum) is defined
as follows. Let His subset of a poset P, a € P. Then ais
an upper bound (resp. a lower bound) of H, if h <
a(resp. a < h) for all h € H. An upper bound (resp. a

lower bound) a of H is the least upper bound (resp.
the greatest lower bound) of Hor supremum (resp.
infimum) of Hif, for any upper bound (resp. any
lower bound) bof H, we have a < b(resp. b < a). We
shall write a = supH(resp. a = infH), or a = VH
(resp. a = AH).

Definition 3: Let (L, <)be a poset. Then Lis called a
lattice if for all a, b € L, sup{a, b}and inf{a, b}exists.
Definition 4: A lattice Lhas a zero element, 0if 0 <
x, forall x € L.

Definition 5: A sublattice [of Lis an ideal if i € Iand
a € Limply thata A i € I.

Definition 6: A proper ideal [of a lattice Lis called
prime if a,b € Land a A b € [imply that either a € lor
bel

Example 1: Consider the lattice shown in Figure 1.
Here the ideal I = {0, a, b, d}is prime ideal.
Definition 7: Let Lbe a lattice with zero. A proper
ideal lof Lis called weakly prime if a,b € Land
0 # a A b € limply that either a € lor b € I.

Example 2: Consider the lattice shown in Figure 1.
Here the ideal I = {0, b, ¢, f }is weakly prime ideal.

Figure 1

Definition 8: Let Lbe a lattice. A proper ideal /of Lis
called a 2-absorbing ideal if whenevera Ab A c € [ for
a,b,c € L, then

eitheraAb € loraAc€E€lorbAc €l

Example 3: Consider the lattice shown in Figure 2.
Here the ideal I = {0, b, ¢, f }is 2-absorbing ideal.
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Definition 9: Let Lbe a lattice with zero. A proper
ideal Jof Lis called a weakly 2-absorbing
ideal if whenever 0 #aAbAc€] for a,b,c€L,
then eithera Ab € loraAc €lorbAc €l

Example 4: Consider the lattice shown in Figure 2.
Here the ideal I = {0,qa,c,e}is weakly 2-absorbing
ideal.

Figure 2
Lemma 2.1: Every prime ideal of a lattice Lwith zero
is a weakly prime ideal.
Proof. Let Ibe a prime ideal of L. suppose that a,b €
Land 0 #a A b €. As lis prime ideal of L, we have
either a € Ior b € . Thus Iis a weakly prime ideal of
L.
Remark 2.1: The following example shows that the
converse of this Lemma does not hold. We give one
counter example.
Example 5: Let L be a lattice shown in Figure 1. The
ideal I = {0}is weakly prime ideal, but for anb =
0 € I, we have neither a € Inor b € I. Thus Iis not a
prime ideal.
Lemma 2.2: Every prime ideal of a lattice Lis a 2-
absorbing ideal of L.
Proof. Let Ibe a prime ideal of L. Suppose that
a,b,c € Land a Ab Ac € 1. As Iis prime ideal of L, we
have either
(1) anb€elorc€el,or(2)anc€lorb€l,
or(3)bAceloracl.
Without lost of generality, suppose that a Ab € lor
c€l. If anb € Ithen the proof is obvious and if
c€lthen aAc€land bAcel. Thus Ilis a 2-
absorbing ideal of L.
Lemma 2.3: Every weakly prime ideal of a lattice
Lwith zero is a weakly 2-absorbing ideal of L.
The proof of this Lemma is obvious.
Remark 2.2: The converse of the preceding is not
true. We give a counter example.
Example 6: Consider the lattice shown in Figure 2.
The ideal I = {0, b, c, f}is a 2-absorbing and a weakly
2-absorbing ideal.
Forh,j €L, hAj= f €I, neither h€lInor je€El.
Hence Iis neither prime norweakly prime ideal.

Lemma 2.4: Every 2-absorbing ideal of a lattice Lwith
zero is a weakly 2-absorbing ideal of L.
Proof. Suppose that /is a 2-absorbing ideal of a lattice
L. Let a,bce€land 0#aAbAc€el. As Iis 2-
absorbing ideal of L, we have either aAb € lor
aNc€lorbAce€El
Remark 2.3: The converse of this Lemma does not
hold. Here we give one counter example.
Example 7: Consider the lattice shown in Figure 1.
Here the ideal I = {0}is a weakly 2-absorbing ideal.
For d,e,f €L, we have dAeAf =0 € Iwe have
neither dANe= a€ Inor dAf = b€ Inor
e A f = ¢ € 1. Thus Iis not a2-absorbing ideal.

The following lattice contains an ideal that is neither
2-absorbingnor weakly 2-absorbing.
Example 8: Consider the lattice shown in Figure 3.
Let I = {0, c}. Then Iis the ideal of this lattice.
For k,m,n € Lsuch that k AmAn = c €I, we have
neither kAm= f € Inor kAn= h € Inor
mAn= je€El
Thus Iis neither weakly 2-absorbing nor 2-absorbing
ideal of L.

Figure 3

Lemma 2.5: Let Pand Qbe two distinct prime ideals
of a lattice L, then PNQis a 2-absorbing ideal of L.
Proof. Let x,y,z€land xAyAz€PNQthen
xXANyAz€Pand xAyAz€Q. Since Pand Qare
prime ideals of L, we have, either WxAye
Por z€ Pand xAy € Qor z€(Q, or (2)xAz€ Por
y€Pand xAz€Qor yeEQ, or (3)yAz€ Por x €
Pand y Az € Qor x € Q. Without lost of generality,
suppose that x Ay € Por z € Pand x Ay € Qor z € Q.
If x Ay € Pand x Ay € Qthen proof is obvious. If
z € Pand z € Q then either x Az € Pand x Az € Qor
yAz€PandyAz€Q.

Similarly we have the following Lemma for weakly
prime ideals.
Lemma 2.6: Let Pand Qbe two distinct weakly prime
ideals of a lattice Lwith zero, then PNQis a weakly 2-
absorbing ideal of L.
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3. Results by Using Triple Zero

Definition 10: Let /be a weakly 2-absorbing ideal of a
lattice Land a,b,c € L. We say (a, b, c)is a triple zero
of Iif aAbAc= Othen aAb&l, aAc¢Iland
bAc é&l.

Definition 11: For an ideal Iof a lattice L, we define
()12 = {aAb:a+b; abel}.

)= {aAbAcia#b+c; ab,c€EI}.
3)anbAl= {aAbAi:i€l}.
(4)anl?>={aNinj:i+]; i,j€EI}.

Definition 12: A lattice Lis called modular if, for all
elements a, b, ¢ € L, the following identity holds:
(anc)v(bAc) = [(anc)VDb]Ac.

Modular law:a < cimplies that

aV((bnac) = (avb)Ac.

Definition 13: A lattice Lsatisfying the following
identities; for all x,y,z € L,

WxA(yVz) = (xAY)V(xAz)

)xv(yAz) = (xVY)A(xV2z)

is called distributive lattice.

Theorem 3.1: Let Ibe a weakly 2-absorbing ideal of a
modular lattice Lwith zero and suppose that (a, b, ¢)is
a triple zero of Ifor some a, b, c € L. Then
aNbAl=ancAN]l=bAcAl= {0}

Proof. Suppose that a Ab Ai # 0 for some i € I. Then
0 #(anbAc)V(anbAi)el

(since a Ab Ai # 0). As L is modular, we have
aAbA(cV(anbAi)) el Since (a,b,c) is a triple
zero of I, a Ab & I. Therefore, either a A (cV (aAb A
i)) € Ior

bA(cv(aAnbAiQ)) el

As L is modular and aAbAi<a, we have
aAN(cVv(@anbAi)) = (anc)V(anbAi)EL
Similarly, a A b Ai < b, we have

bA(cv(aAnbAD) = (bAC)V(aAbAD)EL

Thus, either (a Ac)V (aAb AiQ) € lor
(bAc)V(anbAi) el
Now,wehaveaAc<(aAc)V(aAbAQ)
andbAc<(bAc)V(anbAi).

Thus, either aAc€lor bAc€l, which is a
contradiction to (a, b, c) is a triple zero of I. Hence
aAbAl= {0}. Similarly, we can show that
aNcANl=DbAcAl= {0}

Theorem 3.2: Let /be a weakly 2-absorbing ideal of a
distributive lattice Lwith zero and suppose that
(a, b, ¢)is a triple zero of Ifor some a, b, ¢ € L. Then
anNI?=bAI?=cAI? ={0}).

Proof. Suppose that aAx Ay # 0 for some x,y €1,
x #y. As Lis distributive, we have a A (bVx) A (cV
y)= [(@aAbAc)V(anbAy)]|V[(arxAc)V (aA

x Ay)]. Since (a,b,c) is a triple zero of I, we have
aAbAc= 0.ByTheorem 3.1, we have
aANbAi=aAcANi= bAcAi={0}, for i €l. Thus
aN(bVx)AN(cVy) = aAxAy#0.
AsO#aAxAy€El wehave

0#aA(bVx)A(cVy) €l Since lis a weakly 2-
absorbing ideal of L, we have either a A (b V x) € lor

anN(cvy)€elor (bvx)A(cVy)€l Thus, either
aAb€lor aAc€lor bAc€l. Which is a
contradiction to (a,b,c) is triple zero of I. Thus
a AI? = {0}. Similarly, we can show that bAI? =
cAI? ={0}.
Theorem 3.3: Let Lbe a distributive lattice with zero.
Let Ibe a weakly 2-absorbing ideal of L, that is not 2-
absorbing ideal. Then I* = {0}.
Proof. Since Iis not a 2-absorbing ideal of L, Ihas a
triple zero (a, b, ¢) for some a, b, c € L. We have
B={xAyAzx+y+2z x,y,z€Il}.

Suppose that x Ay Az # 0 for some x,y,z € I. As Lis
distributive, we have

(avx)A(bvy)Aa(cVz)=
(ancAbD)V(xAcAb)V(@aAcAY)V(xAcAY)V
(@anzAD)V(xAzZAD)V(aAzZAY)V(XAZAY).
By Theorem 3.1 and Theorem 3.2, we have a Ab AT =
aANcANl=bAcAl= {0},
aANI?=bAI?=cAI? ={0} and since (a,b,c) is a
triple zero of I, a Ab Ac = 0. Thus,
(avx)A(bVy)A(cVz) = xANyAz+0.
Hence 0+ (aVx)A(bVY)A(cVvz)€EI As lis a
weakly 2-absorbing ideal, we have, either (aVx)A
(bvy)elor (avx)A(cvz)el or (bVvy)A(cV
z) € I. Hence, either
(aAnb)V(xAb)V(aAny)V (xAy) € lor
(anc)v(xAc)v(anz)V(xAz)€lor
(bAc)VyAc)V((bAZ)V(yAZ)EL
Thus, eithera Ab € loraAc € Ior b Ac € I. Which is
a contradiction to (a, b, c) is a triple zero of I. Hence
I3 = {0}.
Remark 3.1: The following example shows that the
converse of above theorem does not hold.
Example 9: Consider the ideal I = {0,q, f}of the
lattice shown in Figure 4.

1m

h

Figure 4

Here I* = {0}. Now for n,0,p € Land

nAoAp= a€limpliesnAo=j¢&l,

nAp = e¢&land o Ap = | € ]. Thus Iis not a weakly
2-absorbing ideal of L.

Definition 14: Let A, B, C be ideals of a lattice L, we
define following

IMRF Journals

| 84



Mathematical Sciences International Research Journal : Volume 4 Issue 2 (2015)

ISSN 2278-8697

A’BC ={xANYyApPAq:x,y EA; p € B;
q€eEC; x+y}

AB*C ={pAxANyAq:p EA;x,y EB;
qEC; x+y}

ABC?> ={x NA\yApAq:x €EA; y € B;

p.qEC; p*q}
A’B* ={x A\yApAq: x,y €4 p,qEB;
xX#Yy;p#*q}
A*C? = {x AyAPAq: x,y €EA; p,qEC;
X#FY; p*+qh
B*C? = {xA\yApPAq: x,y €B; p,q €C;
X#y;p#*q}

Theorem 3.4: Suppose that A, B, Care weakly 2-
absorbing ideals of a distributive lattice Lwith zero
such that none of them is a 2-absorbing ideal of L.
Then

A’BC = AB*C = ABC? = {0}.

Proof. Suppose that x AyApAq#0 for
x,y€EA(x=+y)andp €B,q €C.

Hence x Ay # 0. As Ais a weakly 2-absorbing ideal of
Land is not 2-absorbing ideal of L, there exists a triple
zero (a, b, c) of Afor some a,b,c € L. As x Ay € Aand
(a,b,c) is a triple- zero of A, we have (x Ay)V (a A
bAc)EA. AsxAy+0,0(xAy)V(aAbAc)EA.
That is 0#[(xAYy)Va]A[(xAY)VDIA[(xAy)V
c] € A. Since Ais a weakly 2-absorbing ideal, we have
either [(xAy)Va]A[(xAy)Vb]E€Aor [(xAy)V
al] AN [(x Ay) V] € Aor

[(x Ay) VD] A[(x Ay) Vc] € A. Hence either

some
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