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Abstract: In this paper, we introduce 2-absorbing and weakly 2-absorbing ideals in lattices. We study their 
properties such as every 2-absorbing ideal of a lattice with zero is weakly 2-absorbing ideal. We define the 
triple zero in lattices and give some results related triple zero. Examples and counter examples are given 
wherever required. 
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Introduction: Ideals were first proposed by Richard 
Dedekind in 1876 in the third edition of his book 
Vorlesungen ber Zahlentheorie (English: Lectures on 
Number Theory). This was a generalization of the 
concept of ideal numbers developed by Emst 
Kummer. Later this concept was expanded by David 
Hilbert and especially Emmy Noether. 
In 2003 Anderson and Smith [2], defined a weakly 
prime ideal in a commutative ring , that is a proper 
ideal of with the property that, if whenever 

, implies either or . 
Badawi [5] in 2007 defined a proper ideal of a 
commutative ring to be a 2-absorbing ideal, if 
whenever for , then either or 

or . Later this concept was generalized by 
Anderson and Badawi [3], Payroviand Babaei [12], 
Azizi [4], Badawi and Darani [6] and Chaudhari [9]. 
In this paper we introduce the concepts of 2-
absorbing and weakly 2-absorbing ideals in lattices. A 
proper ideal of a lattice is called 2-absorbing if 
whenever  for , then either 

or or . A proper ideal of a 
lattice with zero is called weakly 2-absorbing if 
whenever  for , then either 

 or  or . 
In Section 2, we study some basic properties of prime 
ideals, weakly prime ideals, 2-absorbing and weakly 
2-absorbing ideals in lattices and give some examples. 
In Section 3, we study the concepts of a triple zero 
and derive some related results. Let be a weakly 2-
absorbing ideal of a lattice with zero and . 
We say that  is a triple-zero of if 

, then , and . 
We assume throughout that all lattices are lattices 
with zero. 
2. Basic Properties of 2-absorbing and Weakly 2-
absorbing Ideals in Lattices: We recall some 
concepts from the lattice theory, see Gratzer [10]. 
Definition 1: A set with a binary relation ‘ ’ is 
called partially ordered set or poset if is reflexive, 
transitive and antisymmetric. 
Definition 2: A supremum (resp. infimum) is defined 
as follows. Let is subset of a poset , . Then is 
an upper bound (resp. a lower bound) of , if 

(resp. ) for all . An upper bound (resp. a 

lower bound) a of  is the least upper bound (resp. 
the greatest lower bound) of or supremum (resp. 
infimum) of if, for any upper bound (resp. any 
lower bound) of , we have (resp. ). We 
shall write (resp. ), or  
(resp. ). 
Definition 3: Let be a poset. Then is called a 
lattice if for all , and exists. 
Definition 4: A lattice has a zero element, if  

, for all . 
Definition 5: A sublattice of is an ideal if and 

imply that . 
Definition 6: A proper ideal of a lattice is called 
prime if and imply that either or 

. 
Example 1: Consider the lattice shown in Figure 1. 
Here the ideal is prime ideal. 
Definition 7: Let be a lattice with zero. A proper 
ideal of is called weakly prime if and 

imply that either or . 
Example 2: Consider the lattice shown in Figure 1. 
Here the ideal is weakly prime ideal. 
 

 
                                 Figure 1 
 
Definition 8: Let be a lattice. A proper ideal of is 
called a 2-absorbing ideal if whenever  for 

, then 
either or or . 
Example 3: Consider the lattice shown in Figure 2. 
Here the ideal is 2-absorbing ideal. 
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Definition 9: Let be a lattice with zero. A proper 
ideal of is called a weakly                 2-absorbing 
ideal if whenever  for  , 
then either or or . 
Example 4: Consider the lattice shown in Figure 2. 
Here the ideal is weakly 2-absorbing 
ideal. 

 
Figure 2 

Lemma 2.1: Every prime ideal of a lattice with zero 
is a weakly prime ideal. 
Proof. Let be a prime ideal of . suppose that 

and . As is prime ideal of , we have 
either or . Thus is a weakly prime ideal of 

. 
Remark 2.1: The following example shows that the 
converse of this Lemma does not hold. We give one 
counter example. 
Example 5: Let  be a lattice shown in Figure 1. The 
ideal is weakly prime ideal, but for 

 we have neither nor . Thus is not a 
prime ideal. 
Lemma 2.2: Every prime ideal of a lattice is a 2-
absorbing ideal of . 
Proof. Let be a prime ideal of . Suppose that 

and . As is prime ideal of , we 
have either 
(1) or , or (2) or , 
or (3) or . 
Without lost of generality, suppose that or 

. If  then the proof is obvious and if  
then and . Thus is a 2-

absorbing ideal of .  
Lemma 2.3: Every weakly prime ideal of a lattice 

with zero is a weakly 2-absorbing ideal of . 
The proof of this Lemma is obvious. 
Remark 2.2: The converse of the preceding is not 
true. We give a counter example. 
Example 6: Consider the lattice shown in Figure 2. 
The ideal is a 2-absorbing and a weakly 
2-absorbing ideal.  
For , , neither nor . 
Hence is neither prime norweakly prime ideal. 

Lemma 2.4: Every 2-absorbing ideal of a lattice with 
zero is a weakly 2-absorbing ideal of . 
Proof. Suppose that is a 2-absorbing ideal of a lattice 

. Let and . As is 2-
absorbing ideal of , we have either or 

 or .  
Remark 2.3: The converse of this Lemma does not 
hold. Here we give one counter example. 
Example 7: Consider the lattice shown in Figure 1. 
Here the ideal is a weakly 2-absorbing ideal. 
For ,  we have we have 
neither nor nor 

. Thus is not a2-absorbing ideal.  
  The following lattice contains an ideal that is neither 
2-absorbingnor weakly 2-absorbing. 
Example 8: Consider the lattice shown in Figure 3. 
Let . Then is the ideal of this lattice. 
For such that , we have 
neither nor nor 

. 
Thus is neither weakly 2-absorbing nor 2-absorbing 
ideal of . 
 

   
Figure 3  

Lemma 2.5: Let and be two distinct prime ideals 
of a lattice , then is a 2-absorbing ideal of . 
Proof. Let and then 

and . Since and are 
prime ideals of , we have, either               (1)

or and or , or (2) or 
and or , or (3) or 

and or . Without lost of generality, 
suppose that or and or . 
If and then proof is obvious. If 

and  then either and or 
and . 

  Similarly we have the following Lemma for weakly 
prime ideals.                                  
Lemma 2.6: Let and be two distinct weakly prime 
ideals of a lattice with zero, then is a weakly 2-
absorbing ideal of . 
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3. Results by Using Triple Zero 
Definition 10: Let be a weakly 2-absorbing ideal of a 
lattice and . We say is a triple zero 
of if then , and 

. 
Definition 11: For an ideal of a lattice , we define 
(1) . 
(2) . 
(3) . 
(4) . 
Definition 12: A lattice is called modular if, for all 
elements , the following identity holds: 

. 
Modular law: implies that 

. 
Definition 13: A lattice satisfying the following 
identities; for all , 
(1)  
(2)  
is called distributive lattice. 
Theorem 3.1: Let be a weakly 2-absorbing ideal of a 
modular lattice with zero and suppose that is 
a triple zero of for some . Then 

. 
Proof. Suppose that  for some . Then 

 
(since ). As  is modular, we have  

. Since  is a triple 
zero of , . Therefore, either 

or 
.  

As  is modular and , we have        
. 

Similarly, , we have 
. 

Thus, either or 
.  

Now, we have  
and . 
Thus, either or , which is a 
contradiction to  is a triple zero of . Hence 

. Similarly, we can show that 
.  

Theorem 3.2: Let be a weakly 2-absorbing ideal of a 
distributive lattice with zero and suppose that 

is a triple zero of for some . Then 
. 

Proof. Suppose that  for some , 
. As is distributive, we have 

. Since  is a triple zero of , we have 
. By Theorem 3.1, we have  

, for . Thus 
.  

As , we have 
. Since is a weakly 2-

absorbing ideal of , we have either or 

or . Thus, either 
or or . Which is a 

contradiction to  is triple zero of . Thus 
. Similarly, we can show that 
.  

Theorem 3.3: Let be a distributive lattice with zero. 
Let be a weakly 2-absorbing ideal of , that is not 2-
absorbing ideal. Then . 
Proof. Since is not a 2-absorbing ideal of , has a 
triple zero  for some . We have  

 
Suppose that  for some . As is 
distributive, we have 

 

. 
By Theorem 3.1 and Theorem 3.2, we have 

, 
 and since  is a 

triple zero of , . Thus, 
. 

 Hence . As is a 
weakly 2-absorbing ideal, we have, either 

or  or 
. Hence, either  

or 
or  
. 

Thus, either or or . Which is 
a contradiction to  is a triple zero of . Hence 

. 
Remark 3.1: The following example shows that the 
converse of above theorem does not hold. 
Example 9: Consider the ideal of the 
lattice shown in Figure 4. 
 

     Figure 4 
 
Here . Now for and 

implies , 
and . Thus is not a weakly 

2-absorbing ideal of . 
Definition 14: Let A, B, C be ideals of a lattice , we 
define following 
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Theorem 3.4: Suppose that , , are weakly 2-
absorbing ideals of a distributive lattice with zero 
such that none of them is a 2-absorbing ideal of . 
Then 

. 
Proof. Suppose that  for some 

 and , .  
Hence . As is a weakly 2-absorbing ideal of 

and is not 2-absorbing ideal of , there exists a triple 
zero  of for some . As and 

 is a triple- zero of , we have 
. As ,  

That is 
. Since is a weakly 2-absorbing ideal, we have 

either or 
or 

. Hence either 

or or , which is a 
contradiction to  is a triple zero of . Hence 

 and thus . Thus
. Similarly, we can show that 
.  

Theorem 3.5: Suppose that , , are weakly 2-
absorbing ideals of a distributivelattice with zero 
such that none of them is a 2-absorbing ideal of . 
Then 

. 
Proof. We show that . Suppose that 

 for some  and 
. Hence . As is a weakly 2-

absorbingideal of and is not 2-absorbing ideal of , 
there exists a triple zero  of for some 

. As and as  is a triple zero 
of , we have 

. As , we have 
. That is 

. 
Since is a weakly 2-absorbing ideal, we have, either 

or 
 or 

. Hence, either 
or or , which is a 

contradiction to  is a triple zero of . 
Hence  and thus . Thus 

 Similarly we can show that 
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