ON 2-ABSORBING AND WEAKLY 2-ABSORBING IDEALS OF LATTICES

MEENAKSHI P. WASADIKAR, KARUNA T. GAIKWAD

Abstract: In this paper, we introduce 2-absorbing and weakly 2-absorbing ideals in lattices. We study their properties such as every 2-absorbing ideal of a lattice with zero is weakly 2-absorbing ideal. We define the triple zero in lattices and give some results related triple zero. Examples and counter examples are given wherever required.

Keywords: 2-absorbing ideal, prime ideal, weakly prime ideal, weakly 2-absorbing ideal in lattices.

Introduction: Ideals were first proposed by Richard Dedekind in 1876 in the third edition of his book Vorlesungen ber Zahlentheorie (English: Lectures on Number Theory). This was a generalization of the concept of ideal numbers developed by Emst Kummer. Later this concept was expanded by David Hilbert and especially Emmy Noether.

In 2003 Anderson and Smith [2], defined a weakly prime ideal in a commutative ring R, that is a proper ideal P of R with the property that, if whenever $a, b \in R$, $0 \neq ab \in P$ implies either $a \in P$ or $b \in P$.

Badawi [5] in 2007 defined a proper ideal I of a commutative ring R to be a 2-absorbing ideal, if whenever $abc \in I$ for $a,b,c \in R$, then either $ab \in I$ or $bc \in I$ or $ac \in I$. Later this concept was generalized by Anderson and Badawi [3], Payroviand Babaei [12], Azizi [4], Badawi and Darani [6] and Chaudhari [9].

In this paper we introduce the concepts of 2-absorbing and weakly 2-absorbing ideals in lattices. A proper ideal I of a lattice L is called 2-absorbing if whenever $a \land b \land c \in I$ for $a,b,c \in L$, then either $a \land b \in I$ or $a \land c \in I$ or $b \land c \in I$. A proper ideal L of a lattice L with zero is called weakly 2-absorbing if whenever $0 \neq a \land b \land c \in I$ for $a,b,c \in L$, then either $a \land b \in I$ or $a \land c \in I$ for $b \land c \in I$.

In Section 2, we study some basic properties of prime ideals, weakly prime ideals, 2-absorbing and weakly 2-absorbing ideals in lattices and give some examples. In Section 3, we study the concepts of a triple zero and derive some related results. Let I be a weakly 2-absorbing ideal of a lattice L with zero and $a, b, c \in L$. We say that (a, b, c) is a triple-zero of I if $a \land b \land c = 0$, then $a \land b \notin I$, $a \land c \notin I$ and $b \land c \notin I$.

We assume throughout that all lattices are lattices with zero.

2. Basic Properties of 2-absorbing and Weakly 2-absorbing Ideals in Lattices: We recall some concepts from the lattice theory, see Gratzer [10].

Definition 1: A set P with a binary relation ' \leq ' is called partially ordered set or poset if \leq is reflexive, transitive and antisymmetric.

Definition 2: A supremum (resp. infimum) is defined as follows. Let H is subset of a poset P, $a \in P$. Then a is an upper bound (resp. a lower bound) of H, if $h \le a$ (resp. $a \le h$) for all $h \in H$. An upper bound (resp. a

lower bound) a of H is the least upper bound (resp. the greatest lower bound) of H or supremum (resp. infimum) of H if, for any upper bound (resp. any lower bound) b of H, we have $a \le b$ (resp. $b \le a$). We shall write a = supH (resp. a = infH), or a = VH (resp. $a = \Lambda H$).

Definition 3: Let (L, \leq) be a poset. Then L is called a lattice if for all $a, b \in L$, $sup\{a, b\}$ and $inf\{a, b\}$ exists.

Definition 4: A lattice *L* has a zero element, 0 if $0 \le x$, for all $x \in L$.

Definition 5: A sublattice *I* of *L* is an ideal if $i \in I$ and $a \in L$ imply that $a \land i \in I$.

Definition 6: A proper ideal *I* of a lattice *L* is called prime if $a, b \in L$ and $a \land b \in I$ imply that either $a \in I$ or $b \in I$.

Example 1: Consider the lattice shown in Figure 1. Here the ideal $I = \{0, a, b, d\}$ is prime ideal.

Definition 7: Let *L* be a lattice with zero. A proper ideal *I* of *L* is called weakly prime if $a, b \in L$ and $0 \neq a \land b \in I$ imply that either $a \in I$ or $b \in I$.

Example 2: Consider the lattice shown in Figure 1. Here the ideal $I = \{0, b, c, f\}$ is weakly prime ideal.

Figure 1

Definition 8: Let *L*be a lattice. A proper ideal *I*of *L*is called a 2-absorbing ideal if whenever $a \land b \land c \in I$ for $a, b, c \in L$, then

either $a \land b \in I$ or $a \land c \in I$ or $b \land c \in I$.

Example 3: Consider the lattice shown in Figure 2. Here the ideal $I = \{0, b, c, f\}$ is 2-absorbing ideal.

IMRF Journals 82

Definition 9: Let *L*be a lattice with zero. A proper ideal *I*of *L*is called a weakly 2-absorbing ideal if whenever $0 \neq a \land b \land c \in I$ for $a, b, c \in L$, then either $a \land b \in I$ or $a \land c \in I$ or $b \land c \in I$.

Example 4: Consider the lattice shown in Figure 2. Here the ideal $I = \{0, a, c, e\}$ is weakly 2-absorbing ideal.

Figure 2

Lemma 2.1: Every prime ideal of a lattice *L* with zero is a weakly prime ideal.

Proof. Let *I*be a prime ideal of *L*. suppose that $a, b \in L$ and $0 \neq a \land b \in I$. As *I* is prime ideal of *L*, we have either $a \in I$ or $b \in I$. Thus *I* is a weakly prime ideal of *I*.

Remark 2.1: The following example shows that the converse of this Lemma does not hold. We give one counter example.

Example 5: Let *L* be a lattice shown in Figure 1. The ideal $I = \{0\}$ is weakly prime ideal, but for $a \land b = 0 \in I$, we have neither $a \in I$ nor $b \in I$. Thus I is not a prime ideal.

Lemma 2.2: Every prime ideal of a lattice *L* is a 2-absorbing ideal of *L*.

Proof. Let *I* be a prime ideal of *L*. Suppose that $a, b, c \in L$ and $a \land b \land c \in I$. As *I* is prime ideal of *L*, we have either

(1) $a \wedge b \in I$ or $c \in I$, or (2) $a \wedge c \in I$ or $b \in I$, or (3) $b \wedge c \in I$ or $a \in I$.

Without lost of generality, suppose that $a \land b \in I$ or $c \in I$. If $a \land b \in I$ then the proof is obvious and if $c \in I$ then $a \land c \in I$ and $b \land c \in I$. Thus I is a 2-absorbing ideal of L.

Lemma 2.3: Every weakly prime ideal of a lattice *L* with zero is a weakly 2-absorbing ideal of *L*.

The proof of this Lemma is obvious.

Remark 2.2: The converse of the preceding is not true. We give a counter example.

Example 6: Consider the lattice shown in Figure 2. The ideal $I = \{0, b, c, f\}$ is a 2-absorbing and a weakly 2-absorbing ideal.

For $h, j \in L$, $h \land j = f \in I$, neither $h \in I$ nor $j \in I$. Hence I is neither prime norweakly prime ideal.

Lemma 2.4: Every 2-absorbing ideal of a lattice *L*with zero is a weakly 2-absorbing ideal of *L*.

Proof. Suppose that I is a 2-absorbing ideal of a lattice L. Let $a,b,c \in L$ and $0 \neq a \land b \land c \in I$. As I is 2-absorbing ideal of L, we have either $a \land b \in I$ or $a \land c \in I$ or $b \land c \in I$.

Remark 2.3: The converse of this Lemma does not hold. Here we give one counter example.

Example 7: Consider the lattice shown in Figure 1. Here the ideal $I = \{0\}$ is a weakly 2-absorbing ideal. For $d, e, f \in L$, we have $d \land e \land f = 0 \in I$ we have neither $d \land e = a \in I$ nor $d \land f = b \in I$ nor $e \land f = c \in I$. Thus I is not a2-absorbing ideal.

The following lattice contains an ideal that is neither 2-absorbingnor weakly 2-absorbing.

Example 8: Consider the lattice shown in Figure 3. Let $I = \{0, c\}$. Then I is the ideal of this lattice.

For $k, m, n \in L$ such that $k \land m \land n = c \in I$, we have neither $k \land m = f \in I$ nor $k \land n = h \in I$ nor $m \land n = j \in I$.

Thus I is neither weakly 2-absorbing nor 2-absorbing ideal of L.

Figure 3

Lemma 2.5: Let P and Q be two distinct prime ideals of a lattice L, then $P \cap Q$ is a 2-absorbing ideal of L.

Proof. Let $x, y, z \in L$ and $x \land y \land z \in P \cap Q$ then $x \land y \land z \in P$ and $x \land y \land z \in Q$. Since P and Q are prime ideals of L, we have, either $(1)x \land y \in P$ or $z \in P$ and $x \land y \in Q$ or $z \in Q$, or $(2)x \land z \in P$ or $y \in P$ and $x \land z \in Q$ or $y \in Q$, or $(3)y \land z \in P$ or $x \in P$ and $y \land z \in Q$ or $x \in Q$. Without lost of generality, suppose that $x \land y \in P$ or $z \in P$ and $x \land y \in Q$ or $z \in Q$. If $x \land y \in P$ and $x \land y \in Q$ then proof is obvious. If $z \in P$ and $z \in Q$ then either $x \land z \in P$ and $x \land z \in Q$ or $y \land z \in P$ and $y \land z \in Q$.

Similarly we have the following Lemma for weakly prime ideals.

Lemma 2.6: Let P and Q be two distinct weakly prime ideals of a lattice L with zero, then $P \cap Q$ is a weakly 2-absorbing ideal of L.

3. Results by Using Triple Zero

Definition 10: Let *I* be a weakly 2-absorbing ideal of a lattice *L* and $a, b, c \in L$. We say (a, b, c) is a triple zero of *I* if $a \land b \land c = 0$ then $a \land b \notin I$, $a \land c \notin I$ and $b \land c \notin I$.

Definition 11: For an ideal *I* of a lattice *L*, we define $(1)I^2 = \{a \land b: a \neq b; a, b \in I\}.$

 $(2)I^3 = \{a \land b \land c : a \neq b \neq c; \ a, b, c \in I\}.$

 $(3)a \wedge b \wedge I = \{a \wedge b \wedge i : i \in I\}.$

 $(4)a \wedge I^2 = \{a \wedge i \wedge j \colon i \neq j; \ i, j \in I\}.$

Definition 12: A lattice *L* is called modular if, for all elements $a, b, c \in L$, the following identity holds: $(a \land c) \lor (b \land c) = [(a \land c) \lor b] \land c$.

Modular law: $a \le c$ implies that

 $a \lor (b \land c) = (a \lor b) \land c.$

Definition 13: A lattice *L* satisfying the following identities; for all $x, y, z \in L$,

 $(1) x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$

 $(2) x \lor (y \land z) = (x \lor y) \land (x \lor z)$

is called distributive lattice.

Theorem 3.1: Let *I* be a weakly 2-absorbing ideal of a modular lattice *L* with zero and suppose that (a, b, c) is a triple zero of *I* for some $a, b, c \in L$. Then

 $a \wedge b \wedge I = a \wedge c \wedge I = b \wedge c \wedge I = \{0\}.$

Proof. Suppose that $a \land b \land i \neq 0$ for some $i \in I$. Then $0 \neq (a \land b \land c) \lor (a \land b \land i) \in I$

(since $a \land b \land i \neq 0$). As *L* is modular, we have

 $a \wedge b \wedge (c \vee (a \wedge b \wedge i)) \in I$. Since (a, b, c) is a triple zero of I, $a \wedge b \notin I$. Therefore, either $a \wedge (c \vee (a \wedge b \wedge i)) \in I$ or

 $b \wedge (c \vee (a \wedge b \wedge i)) \in I$.

As *L* is modular and $a \wedge b \wedge i \leq a$, we have $a \wedge (c \vee (a \wedge b \wedge i)) = (a \wedge c) \vee (a \wedge b \wedge i) \in I$.

Similarly, $a \land b \land i \leq b$, we have

 $b \wedge (c \vee (a \wedge b \wedge i)) = (b \wedge c) \vee (a \wedge b \wedge i) \in I.$

Thus, either $(a \land c) \lor (a \land b \land i) \in I$ or

 $(b \land c) \lor (a \land b \land i) \in I$.

Now, we have $a \land c \le (a \land c) \lor (a \land b \land i)$

and $b \wedge c \leq (b \wedge c) \vee (a \wedge b \wedge i)$.

Thus, either $a \land c \in I$ or $b \land c \in I$, which is a contradiction to (a,b,c) is a triple zero of I. Hence $a \land b \land I = \{0\}$. Similarly, we can show that $a \land c \land I = b \land c \land I = \{0\}$.

Theorem 3.2: Let *I* be a weakly 2-absorbing ideal of a distributive lattice *L* with zero and suppose that (a, b, c) is a triple zero of *I* for some $a, b, c \in L$. Then $a \wedge I^2 = b \wedge I^2 = c \wedge I^2 = \{0\}.$

Proof. Suppose that $a \land x \land y \neq 0$ for some $x, y \in I$, $x \neq y$. As Lis distributive, we have $a \land (b \lor x) \land (c \lor y) = [(a \land b \land c) \lor (a \land b \land y)] \lor [(a \land x \land c) \lor (a \land x \land y)]$. Since (a, b, c) is a triple zero of I, we have $a \land b \land c = 0$. By Theorem 3.1, we have

 $a \wedge b \wedge i = a \wedge c \wedge i = b \wedge c \wedge i = \{0\}$, for $i \in I$. Thus $a \wedge (b \vee x) \wedge (c \vee y) = a \wedge x \wedge y \neq 0$.

As $0 \neq a \land x \land y \in I$, we have

 $0 \neq a \land (b \lor x) \land (c \lor y) \in I$. Since *I* is a weakly 2-absorbing ideal of *L*, we have either $a \land (b \lor x) \in I$ or

 $a \land (c \lor y) \in I$ or $(b \lor x) \land (c \lor y) \in I$. Thus, either $a \land b \in I$ or $a \land c \in I$ or $b \land c \in I$. Which is a contradiction to (a,b,c) is triple zero of I. Thus $a \land I^2 = \{0\}$. Similarly, we can show that $b \land I^2 = c \land I^2 = \{0\}$.

Theorem 3.3: Let *L* be a distributive lattice with zero. Let *I* be a weakly 2-absorbing ideal of *L*, that is not 2-absorbing ideal. Then $I^3 = \{0\}$.

Proof. Since *I* is not a 2-absorbing ideal of *L*, *I* has a triple zero (a, b, c) for some $a, b, c \in L$. We have

 $I^{3} = \{x \wedge y \wedge z \colon x \neq y \neq z; \ x, y, z \in I\}.$

Suppose that $x \land y \land z \neq 0$ for some $x, y, z \in I$. As L is distributive, we have

 $(a \lor x) \land (b \lor y) \land (c \lor z) =$ $(a \land c \land b) \lor (x \land c \land b) \lor (a \land c \land y) \lor (x \land c \land y) \lor$ $(a \land z \land b) \lor (x \land z \land b) \lor (a \land z \land y) \lor (x \land z \land y).$

By Theorem 3.1 and Theorem 3.2, we have $a \land b \land I = a \land c \land I = b \land c \land I = \{0\},$

 $a \wedge I^2 = b \wedge I^2 = c \wedge I^2 = \{0\}$ and since (a, b, c) is a triple zero of I, $a \wedge b \wedge c = 0$. Thus,

 $(a \lor x) \land (b \lor y) \land (c \lor z) = x \land y \land z \neq 0.$

Hence $0 \neq (a \lor x) \land (b \lor y) \land (c \lor z) \in I$. As *I* is a weakly 2-absorbing ideal, we have, either $(a \lor x) \land (b \lor y) \in I$ or $(a \lor x) \land (c \lor z) \in I$ or $(b \lor y) \land (c \lor z) \in I$. Hence, either

 $(a \wedge b) \vee (x \wedge b) \vee (a \wedge y) \vee (x \wedge y) \in Ior$

 $(a \wedge c) \vee (x \wedge c) \vee (a \wedge z) \vee (x \wedge z) \in Ior$

 $(b \land c) \lor (y \land c) \lor (b \land z) \lor (y \land z) \in I$.

Thus, either $a \land b \in I$ or $a \land c \in I$ or $b \land c \in I$. Which is a contradiction to (a, b, c) is a triple zero of I. Hence $I^3 = \{0\}$.

Remark 3.1: The following example shows that the converse of above theorem does not hold.

Example 9: Consider the ideal $I = \{0, a, f\}$ of the lattice shown in Figure 4.

Figure 4

Here $I^3 = \{0\}$. Now for $n, o, p \in L$ and $n \land o \land p = a \in I$ implies $n \land o = j \notin I$,

 $n \wedge p = e \notin I$ and $o \wedge p = l \notin I$. Thus I is not a weakly 2-absorbing ideal of L.

Definition 14: Let A, B, C be ideals of a lattice *L*, we define following

$$A^{2}BC = \{x \land y \land p \land q \colon x, y \in A; \ p \in B; \\ q \in C; \ x \neq y\}.$$

$$AB^{2}C = \{p \land x \land y \land q \colon p \in A; x, y \in B; \\ q \in C; \ x \neq y\}.$$

$$ABC^{2} = \{x \land y \land p \land q \colon x \in A; \ y \in B; \\ p, q \in C; \ p \neq q\}.$$

$$A^{2}B^{2} = \{x \land y \land p \land q \colon x, y \in A; \ p, q \in B; \\ x \neq y; \ p \neq q\}.$$

$$A^{2}C^{2} = \{x \land y \land p \land q \colon x, y \in A; \ p, q \in C; \\ x \neq y; \ p \neq q\}.$$

$$B^{2}C^{2} = \{x \land y \land p \land q \colon x, y \in B; \ p, q \in C; \\ x \neq y; \ p \neq q\}.$$

Theorem 3.4: Suppose that A, B, C are weakly 2-absorbing ideals of a distributive lattice L with zero such that none of them is a 2-absorbing ideal of L. Then

$$A^2BC = AB^2C = ABC^2 = \{0\}.$$

Proof. Suppose that $x \land y \land p \land q \neq 0$ for some $x, y \in A \ (x \neq y)$ and $p \in B, q \in C$.

Hence $x \land y \neq 0$. As A is a weakly 2-absorbing ideal of L and is not 2-absorbing ideal of L, there exists a triple zero (a,b,c) of A for some $a,b,c \in L$. As $x \land y \in A$ and (a,b,c) is a triple-zero of A, we have $(x \land y) \lor (a \land b \land c) \in A$. As $x \land y \neq 0$, $0 \neq (x \land y) \lor (a \land b \land c) \in A$. That is $0 \neq [(x \land y) \lor a] \land [(x \land y) \lor b] \land [(x \land y) \lor c] \in A$. Since A is a weakly 2-absorbing ideal, we have either $[(x \land y) \lor a] \land [(x \land y) \lor b] \in A$ or $[(x \land y) \lor c] \in A$ or

 $[(x \land y) \lor b] \land [(x \land y) \lor c] \in A$. Hence either

 $a \wedge b \in A$ or $a \wedge c \in A$ or $b \wedge c \in A$, which is a contradiction to (a, b, c) is a triple zero of A. Hence $x \wedge y = 0$ and thus $x \wedge y \wedge p \wedge q = 0$. Thus $A^2BC = \{0\}$. Similarly, we can show that $AB^2C = ABC^2 = \{0\}$.

Theorem 3.5: Suppose that A, B, C are weakly 2-absorbing ideals of a distributive lattice L with zero such that none of them is a 2-absorbing ideal of L. Then

$$A^2B^2 = A^2C^2 = B^2C^2 = \{0\}.$$

Proof. We show that $A^2B^2 = \{0\}$. Suppose that $x \land y \land p \land q \neq 0$ for some $x, y \in A(x \neq y)$ and $p, q \in B$ ($p \neq q$). Hence $x \land y \neq 0$. As A is a weakly 2-absorbing ideal of L and A is not 2-absorbing ideal of L, there exists a triple zero (a, b, c) of A for some $a, b, c \in L$. As $x \land y \in A$ and as (a, b, c) is a triple zero of A, we have

 $(x \land y) \lor (a \land b \land c) \in A$. As $x \land y \neq 0$, we have $0 \neq (x \land y) \lor (a \land b \land c) \in A$. That is

 $0 \neq [(x \land y) \lor a] \land [(x \land y) \lor b] \land [(x \land y) \lor c] \in A$. Since A is a weakly 2-absorbing ideal, we have, either $[(x \land y) \lor a] \land [(x \land y) \lor b] \in A$ or $[(x \land y) \lor a] \land [(x \land y) \lor c] \in A$ or

 $[(x \land y) \lor b] \land [(x \land y) \lor c] \in A$. Hence, either $a \land b \in A$ or $a \land c \in A$ or $b \land c \in A$, which is a contradiction to (a, b, c) is a triple zero of A.

Hence $x \wedge y = 0$ and thus $x \wedge y \wedge p \wedge q = 0$. Thus $A^2B^2 = \{0\}$. Similarly we can show that $A^2C^2 = B^2C^2 = \{0\}$.

References:

- 1. D. D. Anderson and M. Bataineh, Generalization of prime ideals, Comm. Algebra 36 (2008), 686-696.
- 2. A.Praveenprakash ,J.Estherjerlin , Arthi.K, A Study on the Causes for Failures in Mathematics; Mathematical Sciences International Research Journal ISSN 2278 8697 Vol 3 Issue 1 (2014), Pg 320-325
- 3. D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math., 29 (4) (2003), 831-840.
- 4. D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra, 39 (2011), 1646-1672.
- 5. A. Azizi, Weakly prime submodules and prime submodules, Glasg. Math. J., 48, no. 2, 343–346, 2006.
- 6. A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75 (2007), 417-429.
- 7. A. Badawi and A. Y. Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math., 39(2) (2013),441-452.

- 8. Garret Birkhoff, Lattice Theory, Vol.25, of AMS Colloquium Publications. American Mathematical Soc., 1967.
- 9. P. B. Bhattacharya, S. K. Jain and S. R. Nagpal, Basic Abstract Algebra, Cambridge University Press, 1997.
- 10. J. N. Chaudhary, 2-Absorbing Ideals in Semirings, International Journal of Algebra, 6, 2012, no. 6, 265 - 270.
- Dr.K.Chithra, G.Hema, N. Sangeetha, B-Chromatic Number of A Triangular Belt;
 Mathematical Sciences international Research
 Journal ISSN 2278 8697 Vol 3 Issue 2 (2014), Pg 891-892
- 12. George Gratzer, General Lattice Theory, Birkhauser, Basel (1998).
- 13. I. N. Herstein, Topics in Algera, second ed., Wiley India (P) Ltd., New Delhi, 2008.
- 14. SH. Payrovi and S. Babaei, On 2-absorbing ideals, International Mathematical Forum, 7, (2012), no. 6, 265 271.

Meenakshi P. Wasadikar, Karuna T. Gaikwad/, Department of Mathematics/Dr. B. A. M. University/Aurangabad/431004,/India.