SLIGHTLY GENERALIED STAR $\omega\alpha$ -CONTINUOUS FUNCTIONS IN TOPOLOGICAL SPACES

P. G. PATIL, S. S. BENCHALLI, PALLAVI S. MIRAJAKAR

Abstract: The purpose of this paper is to introduce the concept of slightly generalized star $\omega\alpha$ -continuous (briefly slightly $g^*\omega\alpha$ -continuous) functions in topological spaces. Further, the basic properties and preservation theorems of slightly $g^*\omega\alpha$ -continuous functions are studied.

Keywords: $g^*\omega\alpha$ -closed sets, $g^*\omega\alpha$ -continuous functions, $g^*\omega\alpha$ -irresolute maps.

1. Introduction: The concept of slightly continuous functions and their properties were first studied by Jain [5] in 1980. Later Nour [7], Baker [1] and Ekiri and Caldas [4] introduced and studied slightly semi continuity, slightly pre continuity and slightly γ-continuity in topological spaces.

The object of this paper is to introduce a new generalization of slightly continuity, which we call slightly $g^*\omega\alpha$ -continuity using $g^*\omega\alpha$ -closed sets in topological spaces.

2. Preliminary: Throughout this paper, the spaces (X, τ) and (Y, σ) (or simply X and Y) always denote topological spaces on which no separation axioms are assumed unless explicitly stated.

Definition 2.1 [8]: A subset A of a topological space X is called a generalized star $\omega\alpha$ -closed (briefly $g^*\omega\alpha$ -closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\omega\alpha$ -open in X.

The family of all $g^*\omega\alpha$ -closed subsets of X is denoted by $G^*\omega\alpha C(X)$.

Definition 2.2: A subset A of a topological space X is called

- (i) $T_{g^*\omega\alpha}$ -space [9] if every $g^*\omega\alpha$ -closed set is closed. **Definition 2.3**: A topological space X is said to be a
- (i) Mildly compact [11] if every clopen cover of X has a finite subcover.
- (ii) Clopen T₁[11] if for each pair of distinct points x and y in X, there exist a disjoint clopen sets U containing x but not y and V containing y but not x.
- (iii) Clopen $T_2[n]$ if for each pair of distinct points x and y in X, there exist disjoint clopen sets U and V such that $x \in U$ and $y \in V$.
- (iv) Ultra Hausdroff [11] if every distinct points of X can be separated by disjoint clopen sets.

Definition 2.4: A function $f: X \to Y$ is called

- (i) slightly continuous [5] if for each $x \in X$ and every clopen subset V of Y containing f(x) there exists an open set U of X with $x \in U$ and $f(U) \subseteq V$.
- (ii) $g^*\omega\alpha$ -continuous [10] if $f^1(V)$ is $g^*\omega\alpha$ -closed in X for every closed set V of Y.
- (iii) $g^*\omega\alpha$ -irresolute [10] if $f^1(V)$ is $g^*\omega\alpha$ -closed in X for every $g^*\omega\alpha$ -closed set V of Y.
- (iv) $g^*\omega\alpha$ -open [10] if f(V) is $g^*\omega\alpha$ -open in Y for every open set V of X.

3. Slightly Generalized Star $\omega\alpha$ -Continuous Functions in Topological Spaces:

Definition 3.1: A function $f: X \to Y$ is said to be slightly $g^*\omega\alpha$ -continuous at a point $x \in X$ if for each clopen subset V of Y containing f(x), there exists a $g^*\omega\alpha$ -open subset U of X containing X such that $f(U) \subset V$

Remark 3.2: If the above property holds for each point $x \in X$, then f is said to be slightly $g^*\omega\alpha$ -continuous functions.

Lemma 3.3: The following statements are equivalent for a function $f: X \rightarrow Y$:

- (i) f is slightly $g^*\omega\alpha$ -continuous.
- (ii) for every $x \in X$ and each clopen set $V \subseteq Y$ containing f(x), there exists $U \in G^*\omega\alpha O(X, x)$ such that $f(U) \subseteq V$.

Proof: Suppose (i) holds. Let $x \in X$ and let V be a clopen set in Y containing f(x). By hypothesis, f is slightly $g^*\omega\alpha$ -continuous, then $f^1(V)$ is $g^*\omega\alpha$ -open in X and $x \in f^1(V)$. Let $U = f^1(V)$. Then U is $g^*\omega\alpha$ -open set in X, such that $x \in U$ and $f(U) \subseteq V$. Hence (ii) holds.

Suppose (ii) holds. Let $x \in X$ and V be a clopen in Y such that $x \in f^1(V)$. Then $f(x) \in V$, from the hypothesis, there exist $g^*\omega\alpha$ -open set U_x in X such that $x \in U_x$ and $f(U_x) \subseteq V$. Now $x \in U_x \subseteq f^1(V)$ and $f^1(V) = \bigcup \{U_x: x \in f^1(V)\}$. Since arbitrary union of $g^*\omega\alpha$ -open set is $g^*\omega\alpha$ -open, thus $f^1(V)$ is $g^*\omega\alpha$ -open in X. Therefore f is slightly $g^*\omega\alpha$ -continuous. Hence (i) hold.

Theorem 3.4: The following statements are equivalent for a function $f: X \to Y$:

- (i) f is slightly $g^*\omega\alpha$ -continuous.
- (ii) for every clopen set $V \subseteq Y$, $f^1(V)$ is $g^*\omega \alpha$ -open.
- (iii) for every clopen set $V \subseteq Y$, f'(V) is $g^*\omega \alpha$ -closed.
- (iv) for every clopen set $V \subseteq Y$, f'(V) is $g^*\omega\alpha$ -clopen.

Proof: (i) \rightarrow (ii) Let V be a clopen set in Y. Let $x \in X$ and $x \in f^1(V)$. Since f is slightly $g^*\omega\alpha$ -continuous and by the lemma 3.3, there exist $g^*\omega\alpha$ -open set U_x in X containing x such that $f(U_x)\subseteq V$, this implies $U_x\subseteq f^1(V)$. Therefore $f^1(V) = \bigcup \{U_x : x \in f^1(V)\}$. Since arbitrary union of $g^*\omega\alpha$ -open set is $g^*\omega\alpha$ -open. Thus $f^1(V)$ is $g^*\omega\alpha$ -open set in X.

(ii) \rightarrow (iii) Let V be a clopen set in Y, then Y-V is clopen in Y. From (ii), $f^1(Y-V)$ is $g^*\omega\alpha$ -open. That is

IMRF Journals 190

 $f^{1}(Y-V) = X-f^{1}(V)$ is $g^{*}\omega\alpha$ -open, implies $f^{1}(V)$ is $g^{*}\omega\alpha$ -closed.

(iii) \rightarrow (iv) It follows from (ii) and (iii).

(iv) \rightarrow (i) Let V be a clopen set in Y containing f(x). Then by hypothesis, f'(V) is $g^*\omega\alpha$ -clopen in X. Put U= f'(V), implies $f(U)\subseteq V$. Therefore for each $x\in X$ and each clopen set $V\subseteq Y$, there exist $g^*\omega\alpha$ -open set U in X such that $f(U)\subseteq V$. Thus f is slightly $g^*\omega\alpha$ -continuous.

Theorem 3.5: Every slightly continuous function is slightly $g^*ωα$ -continuous.

Proof: Let $f: X \to Y$ be a slightly $g^*\omega\alpha$ -continuous. Let U be a clopen set in Y, then $f^1(U)$ is $g^*\omega\alpha$ -open in X. Since every open set is $g^*\omega\alpha$ -open [8], $f^1(U)$ is $g^*\omega\alpha$ -open. Hence f is slightly continuous.

The converse of the above theorem need not be true in general as seen from the following example.

Example 3.6: LetX= Y = {a, b, c}, τ = {X, ϕ , {a, b} } and σ = {Y, ϕ , {a}, {b}, {a, b}, {a, c} }. Then the identity function f: X \rightarrow Y is slightly $g^*\omega\alpha$ -continuous but not slightly continuous, since for the set A = {b} is clopen in Y, $f^1(\{b\})$ = {b} is $g^*\omega\alpha$ -open but not an open set in X

Remark 3.7: The converse of the theorem 3.5 holds, if X is $T_{g^*\omega\alpha}$ space.

Definition 3.8[6]: A space X is called Locally Indiscrete space if every open set is closed in X.

Theorem 3.9: If a function $f: X \to Y$ is slightly $g^*\omega\alpha$ -continuous and Y is locally indiscrete space, then f is $g^*\omega\alpha$ -continuous.

Proof: Let U be an open set in Y. Since Y is locally indiscrete, U is closed in Y, implies U is clopen in Y. Since f is slightly $g^*\omega\alpha$ -continuous, $f^1(U)$ is $g^*\omega\alpha$ -open in X. Hence f is $g^*\omega\alpha$ -continuous.

Theorem 3.10: Let $f: X \to Y$ and $g: Y \to Z$ are any two functions. Then, the following properties hold:

- (i) If f is $g^*\omega\alpha$ -irresolute and g is slightly $g^*\omega\alpha$ -continuous, then gof is slightly $g^*\omega\alpha$ -continuous.
- (ii) If f is $g^*\omega\alpha$ -continuous and g is slightly continuous, then gof is slightly $g^*\omega\alpha$ -continuous.

Proof: (i) Let V be a clopen set in Z. Since g is slightly $g^*\omega\alpha$ -continuous, $g^{-1}(V)$ is $g^*\omega\alpha$ -open in Y. Since f is $g^*\omega\alpha$ -irresolute, $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is $g^*\omega\alpha$ -open in X. Therefore gof is slightly $g^*\omega\alpha$ -continuous.

Let V be clopen set in Z. Then $g^{-1}(V)$ is open in Y as g is slightly continuous function. Since f is $g^*\omega\alpha$ -continuous, $f^1(g^{-1}(V)) = (gof)^{-1}(V)$ is $g^*\omega\alpha$ -open in X. Therefore, gof is slightly $g^*\omega\alpha$ continuous.

Corollary 3.11: Let $f: X \to Y$ and $g: Y \to Z$ are any two functions. Then, the following properties hold:

- (i) If f is $g^*\omega\alpha$ -irresolute and g is slightly continuous, then gof is slightly $g^*\omega\alpha$ -continuous.
- (ii) If f is $g^*\omega\alpha$ -continuous and g is slightly continuous, then gof is slightly $g^*\omega\alpha$ -continuous.

Definition 3.12: A topological space X is said to be $g^*\omega\alpha$ -compact if every $g^*\omega\alpha$ -open cover of X has a finite subcover.

Theorem 3.13: If $f: X \to Y$ is slightly $g^*\omega\alpha$ -continuous surjection and X is $g^*\omega\alpha$ -compact then Y is mildly compact.

Proof: Let $\{V_\alpha: V_\alpha \in CO(Y), \alpha \in I \}$ be an cover of Y. Since f is slightly $g^*\omega\alpha$ -continuous, then $\{f^{^1}(V_\alpha): \alpha \in I \}$ is $g^*\omega\alpha$ -open cover of X. Since X is $g^*\omega\alpha$ -compact, there exist a finite subset I_o of I such that

 $X = \bigcup \{f^1(V_\alpha) : \alpha \in I_o\}$. Therefore $Y = \bigcup \{V_\alpha : \alpha \in I_o\}$, since f is surjective. Thus, every clopen cover of Y has finite subcover. Hence Y is mildly compact.

Definition 3.14: A space X is called $g^*\omega\alpha$ -connected provided that X is not the union of two disjoint non empty $g^*\omega\alpha$ -open sets.

Theorem 3.15: If $f: X \to Y$ is slightly $g^*\omega\alpha$ -continuous surjection and X is $g^*\omega\alpha$ -connected then Y is connected.

Proof: Suppose, on the contrary Y is disconnected space. Then, there exist two non empty disjoint open sets U and V such that Y=U \cup V. Therefore U and V are clopen sets in Y. Since f is slightly $g^*\omega\alpha$ -continuous, $f^1(U)$ and $f^1(V)$ are $g^*\omega\alpha$ -open sets in X. Moreover $f^1(U)$ and $f^1(V)$ are disjoint non empty and X= $f^1(U)$ \cup $f^1(V)$ as X is $g^*\omega\alpha$ -compact and f is surjective. Therefore X is not $g^*\omega\alpha$ -connected, which is a contradiction. Hence Y is connected.

Recall that, a space X is said to be (1) extremely disconnected [2] if the closure of every open set of X is open. (2) o-dimensional space if its topology has a base consisting of clopen sets.

Theorem 3.16: If $f: X \to Y$ is slightly $g^*\omega\alpha$ -continuous and Y is extremally disconnected space then f is $g^*\omega\alpha$ -continuous.

Proof: Let $x \in X$ and V be a clopen set in Y containing f(x). Since f is extremally disconnected, cl(V) is open and hence clopen. Since f is slightly $g^*\omega\alpha$ -continuous, there exist $g^*\omega\alpha$ -open set U in X with $x \in U$ and $f(U) \subseteq cl(V)$. Thus, f is $g^*\omega\alpha$ -continuous.

Theorem 3.17: If f: $X \to Y$ is slightly $g^*\omega\alpha$ -continuous and Y is locally indiscrete space then f is $g^*\omega\alpha$ -continuous.

Proof: Let V be an open set in Y. Since f is locally indiscrete space, V is closed in Y and hence clopen in Y. Since f is slightly $g^*\omega\alpha$ -continuous, $f^1(V)$ is $g^*\omega\alpha$ -open in X. Therefore f is $g^*\omega\alpha$ -continuous.

Theorem 3.18: If $f: X \to Y$ is slightly $g^*\omega\alpha$ -continuous and Y is o-dimensional space then f is $g^*\omega\alpha$ -continuous.

Proof: Let $x \in X$ and V be an open set in Y containing f(x). Since Y is o-domensional space, there exist clopen set U in Y containing f(x) such that $U \subseteq V$. Since f is slightly $g^*\omega\alpha$ -continuous, there exist $g^*\omega\alpha$ -open set G in X such that $f(G) \subseteq U$, that is $f(x) \in f(G) \subseteq U \subseteq V$. Therefore f is $g^*\omega\alpha$ -continuous.

4. Separation Axioms Related to Generalized Star $\omega\alpha$ -Open Sets:

Theorem 4.1: Let $f: X \to Y$ be a function and $g: X \to XxY$ be the graph of f, defined by g(x) = (x, f(x)) for every $x \in X$. Then g is slightly $g^*\omega \alpha$ -continuous if and only if f is slightly $g^*\omega \alpha$ -continuous.

Proof: Let V be a clopen set in Y, then XxV is clopen in XxY. Since g is slightly $g^*\omega\alpha$ -continuous, then $f^1(V) = g^1(XxV) \in G^*\omega\alpha O(X)$. Thus f is slightly $g^*\omega\alpha$ -continuous.

Conversely, let $x \in X$ and F be a clopen set in XxY containing g(x). Then $F \cap (\{x\}xY)$ is clopen in $\{x\}xY$ containing g(x). Also $\{x\}xY$ is homeomorphic to Y. Hence $\{y \in Y: (x, y) \in F\}$ is a clopen set in Y. Since f is slightly $g^*\omega\alpha$ -continuous, $\cup \{f^1(y): (x, y) \in F\}$ is a $g^*\omega\alpha$ -open set in X. Further $x \in \cup \{f^1(y): (x, y) \in F\} \subseteq g^1(F)$. Hence $g^1(F)$ is $g^*\omega\alpha$ -open. Then g is slightly $g^*\omega\alpha$ -continuous.

Definition 4.2 [10]: A topological space X is said to be

(i) $g^*\omega\alpha$ - T_1 space if for each pair of distinct points x and y of X, there exist disjoint $g^*\omega\alpha$ -open sets U containing x but not y and V containing y but not x.

(ii) $g^*\omega\alpha$ - T_2 space if for each pair of distinct points x and y of X, there exist disjoint $g^*\omega\alpha$ -open sets U and V such that $x \in U$ and $y \in V$.

Theorem 4.3: If $f: X \to Y$ is slightly $g^*\omega\alpha$ -continuous injection and Y is ultra Hausdroff space then X is $g^*\omega\alpha$ - T_2 space.

Proof: Let x_1 and x_2 be any two distinct points in X. Then $f(x_1) \neq f(x_2)$ as f is injective. Since Y is ultra Hausdroff, there exist clopen sets V_1 and V_2 in Y such that $f(x_1) \in V_1$ and $f(x_2) \in V_2$ and $V_1 \cap V_2 = \phi$. Since f is slightly $g^*\omega\alpha$ -continuous, $x_i \in f^1(V_i) \in G^*\omega\alpha O(X)$ for i=1, 2 and $f^1(V_1) \cap f^1(V_2) = \phi$. Thus, X is $g^*\omega\alpha$ -T₂ space.

Theorem 4.4: If f: $X \to Y$ is slightly $g^*\omega\alpha$ -continuous injective and Y is clopen T_1 then X is $g^*\omega\alpha$ - T_1 space.

Proof: Let x and y be any two distinct points in X. Since f is injective, $f(x) \neq f(y)$. Since Y is clopen T_1 , then there exist disjoint clopen sets V and W in Y such that $f(x) \in V$, $f(y) \notin V$ and $f(x) \notin W$, $f(y) \in W$. Since f is slightly $g^*\omega\alpha$ -continuous, $f^1(V)$ and $f^1(W)$ are disjoint $g^*\omega\alpha$ -open sets in X such that $x \in f^1(V)$, $y \notin f^1(V)$ and $x \notin f^1(W)$, $y \in f^1(W)$. This shows that X is $g^*\omega\alpha$ - T_1 .

Theorem 4.5: If f: $X \to Y$ is slightly $g^*\omega\alpha$ -continuous injective and Y is clopen T_2 then X is $g^*\omega\alpha$ - T_2 space.

Proof: Let x and y be any two distinct points in X, $f(x)\neq f(y)$ as f is injective. Since Y is clopen T_2 , then there exist disjoint clopen sets V and W in Y such that $f(x)\in V$ and $f(y)\in W$. Since f is slightly $g^*\omega\alpha$ -continuous, $f^1(V)\in G^*\omega\alpha O(X,x)$ and

 $f^1(W) \in G^*\omega\alpha O(X, y)$ and $f^1(V) \cap f^1(W) = \varphi$. Therefore for each distinct points x, y in X, there exist two disjoint $g^*\omega\alpha$ -open sets $f^1(V)$ and $f^1(W)$ such that $f^1(V) \cap f^1(W) = \varphi$. Hence X is $g^*\omega\alpha$ - T_2 .

Definition 4.6: A topological space X is said to be

- (i) $g^*\omega\alpha$ normal if for any pair of disjoint $g^*\omega\alpha$ closed sets A and B in X, there exist disjoint
 open sets U and V in X such that $A \subseteq U$, $B \subseteq V$.
- (ii) $g^*\omega\alpha$ -regular if for each $x\in X$ and for each $g^*\omega\alpha$ -closed set F not containing x there exist disjoint open sets U and V such that $x\in U$ and $F\subset V$.

Theorem 4.7: Let Y be a o-dimensional space and f: X \rightarrow Y be a slightly $g^*\omega\alpha$ -continuous injection. Then the following properties hold:

- (i) If Y is T_1 (respectively T_2) then X is $g^*\omega\alpha T_1$ (respectively $g^*\omega\alpha T_2$).
- (ii) If f is either open or closed then X is $g^*\omega\alpha$ regular.
- (iii) If f is closed and Y is normal then X is $g^*\omega\alpha$ -regular.

Proof: (i) The first part is obvious, we prove the second part. Let Y be T_2 space. Since f is injective, for any pair of distinct points $x, y \in X$, $f(x) \neq f(y)$. Since Y is T_2 , then there exist disjoint open sets V_1 and V_2 in Y such that $f(x) \in V_1$, $f(y) \in V_2$ and $V_1 \cap V_2 = \varphi$. From hypothesis Y is o-dimensional, then there exists U_1 and $U_2 \in CO(Y)$ such that $f(x) \in U_1 \subseteq V_1$, $f(y) \in U_2 \subseteq V_2$. Consequently $x \in f^1(U_1) \subseteq f^1(V_1)$ and $y \in f^1(U_2) \subseteq f^1(V_2)$ and $f^1(U_1) \cap f^1(U_2) = \varphi$. Since f is slightly $g^*\omega \alpha$ -continuous, $f^1(U_1)$ and $f^1(U_2)$ are $g^*\omega \alpha$ -open sets and so X is $g^*\omega \alpha$ - T_2 space.

(ii)Suppose f is open. Let $x \in X$ and U be an open set containing x. Then $f(x) \in f(U)$ as f is open. On the other hand, o-dimensional of Y gives the existence of $V \in CO(Y)$ such that $f(x) \in V \subseteq f(U)$. So, $x \in f'(V) \subseteq U$ as f is injective. Again, f is slightly $g^*\omega\alpha$ -continuous and f'(V) is $g^*\omega\alpha$ -clopen set in X from theorem 3.4, hence $x \in f'(V) = cl(f'(V)) \subseteq U$. This implies X is $g^*\omega\alpha$ -regular.

Suppose f is closed. Let $x \in X$ and F be a closed set in X such that $x \notin F$. Then $f(x) \notin f(F)$ and $f(x) \in X$ -f(F), which is open in Y. But Y is o-dimensional, then there exist clopen set V in Y such that $f(x) \in V \subseteq Y$ -f(F). Since f is slightly $g^*\omega\alpha$ -continuous, we have

 $x \in f^{1}(V) \in G^{*}\omega\alpha CO(X), F \subseteq X-f^{1}(V) \in G^{*}\omega\alpha CO(X).$ Therefore X is $g^{*}\omega\alpha$ -regular.

(iii)Let F_1 and F_2 be any two closed sets in X such that $F_1 \cap F_2 = \varphi$. Since f is closed and injective, we have $f(F_1)$ and $f(F_2)$ are closed sets in Y with $f(F_1) \cap f(F_2) = \varphi$. By normality of Y, there exist two open set U and V in Y such that $f(F_1) \subseteq U$, $f(F_2) \subseteq V$ and $U \cap V = \varphi$. Let $y \in f(F_1)$, then $y \in U$. Since Y is o-dimensional and U is open in Y, there exists a clopen set U_y such that $y \in U_y \subseteq U$. Then $f(F_1) \subseteq U$ { $U_y : U_y \in CO(Y)$, $y \in f(F_1)$ } $\subseteq U$ and thus $F_1 \subseteq U$ { $f^1(U_y) : U_y \in CO(Y)$, $y \in f(F_1)$ } $\subseteq f^1(U)$. Since f is slightly $g^*\omega \alpha$ -continuous, $f^1(U_y)$ is $g^*\omega \alpha$ -open for each $U_y : CO(Y)$, so that G = U { $f^1(U_y) : Y \in f(F_1)$ } is $g^*\omega \alpha$ -open in X and G is $G \subseteq G \subseteq f^1(U)$. Similarly, there exist G is G in G in G is G in G in G is G in G in G in G in G in G in G is G in G

IMRF Journals 192

 $F_2 \subseteq H \subseteq f^1(V)$ and $G \cap H \subseteq f^1(U \cap V) = \varphi$. This shows that X is $g^*\omega \alpha$ -normal.

Definition 4.8: A space X is said to be $g^*\omega\alpha$ -connected between subsets A and B provided there is no $g^*\omega\alpha$ -clopen set F for which $A \subseteq F$ and $F \cap B = \phi$.

Definition 4.9: A function $f: X \to Y$ is said to be set $g^*\omega\alpha$ -connected if whenever X is $g^*\omega\alpha$ -connected between f(A) and f(B) with respect to the relative topology on f(X).

Theorem 4.10: A function $f: X \to Y$ is set $g^*\omega\alpha$ -connected if and only if $f^1(F)$ is $g^*\omega\alpha$ -clopen for every clopen subsets F of f(X) (w.r.t. the relative topology on f(X)).

Proof: Necessity: Assume the F is clopen subsets of f(X) w.r.t the relative topology on f(X). Suppose that $f^{1}(F)$ is not $g^{*}\omega\alpha$ -closed in X. Then there exist $x \in X$ - $f^{1}(F)$ such that for every $g^{*}\omega\alpha$ -open set U with $x \in U$ and $U \cap f^{1}(F) \neq \varphi$. We claim that the space X is set $g^{*}\omega\alpha$ -connected between x and $f^{1}(F)$. Suppose, there exist $g^{*}\omega\alpha$ -clopen set A such that $f^{1}(F) \subseteq A$ and $x \notin A$. Then $x \in X$ - $A \subseteq X - f^{1}(F)$ and equivalently X-A is $g^{*}\omega\alpha$ -open set containing x and disjoint from $f^{1}(F)$, this contradiction implies that X is set $g^{*}\omega\alpha$ -connected between x and $f^{1}(F)$. Since f is set $g^{*}\omega\alpha$ -connected, f(X) is connected between f(x) and $f(f^{1}(F))$. But $f(f^{1}(F)) \subseteq F$, which is a contradiction.

Therefore f'(F) is $g^*\omega\alpha$ -closed in X and from the argument will show that f'(F) is also $g^*\omega\alpha$ -open.

Sufficiency: Suppose X is $g^*\omega\alpha$ -connected between A and B and also f(X) is not connected between f(A) and f(B) (in relative topology on f(X)). Thus, there is a set $F \subseteq f(X)$ that is clopen in the relative topology on f(X) such that $f(A) \subseteq F$ and $F \cap f(B) = \varphi$. Then $A \subseteq f^1(F)$, $B \cap f^1(F) = \varphi$ and $f^1(F)$ is $g^*\omega\alpha$ -clopen, which shows that X is not $g^*\omega\alpha$ -connected between A and B. It follows that f is set $g^*\omega\alpha$ -connected.

Corollary 4.11: Every slightly $g^*\omega\alpha$ -continuous surjection is set $g^*\omega\alpha$ -connected.

Theorem 4.12: Every set $g^*\omega\alpha$ -connected function is slightly $g^*\omega\alpha$ -continuous.

Proof: Assume that $f: X \to Y$ is set $g^*\omega\alpha$ -connected. Let F be a clopen subset of Y. Then $F \cap f(X)$ is clopen in the relative topology on f(X). Since f is set $g^*\omega\alpha$ -connected, by theorem 4.10, $f^1(F) = f^1(F \cap f(X))$ is $g^*\omega\alpha$ -clopen in X.

Acknowledgment: The authors are grateful to the University Grant Commission, New Delhi, India for financial support under UGC-SAP DRS to the Department of Mathematics, Karnatak University, Dharwad, India. Also this research was supported by Karnatak University, Dharwad, India under No.KU/Sch/UGC-UPE/2014-15/893 dated 24th November, 2014.

References:

- 1. C. B. Baker, "Slightly Pre-Continuous Functions", Acta Math. Hungar., 94(1-2), (2002), 45-52.
- 2. N. Bourbaki, "General Topology", Part I, Addison Wesley, Reading Mass (1996).
- 3. M. Ayaz Ahmad, Ameer A. Nandalur, Mir.Hashimrasool, Shafiq Ahmad, An Approach for the Study of Multiplicity Correlations and; Mathematical Sciences International Research Journal ISSN 2278 8697 Vol 2 Issue 2 (2013), Pg 111-113
- 4. D. E. Cameron, "Properties of S-closed Spaces", Proc. Amer. Math. Soc., 72(1978), 581-586.
- 5. E. Ekiri and M. Caldas, "Slightly γ-Continuous Functions", Bol. Soc. Paran. Mat., 22(2) (2004), 63-74.
- 6. R. C. Jain, "The Role of Regularity Open Sets in General Topology", Ph.D. Thesis, Meerut University, Meerut (1980).
- 7. T. Nieminen, "On Ultrapseduocompact and Related Spaces", Ann. Acad. Sci. Fenn. Ser. A I Math. 3 (1977), No. 2, 185-205.

- 8. T. M. Nour, "Slightly Semi-Continuous Functions", Bull. Calcutta Math. Soc., 87(2) (1995), 187-199.
- 9. P. G. Patil, S. S. Benchalli and Pallavi S. Mirajakar, "Generalized Star $\omega\alpha$ -Closed Sets in Topological Spaces", Jl. of New Results in Science, Vol. 9, (2015), 37-45.
- P. G. Patil, S. S. Benchalli and Pallavi S. Mirajakar, "Generalized Star ωα-Spaces in Topological Spaces", Int. Jl. of Scientific and Innovative Mathematical Research, Vol. 3, Special Issue 1, (2015), 399-391.
- R. Vasanthakumari, K. Thirumurugan, Thermal Convection of Compressible Non - Newtonian ...; Mathematical Sciences International Research Journal ISSN 2278 - 8697 Vol 2 Issue 1 (2013), Pg 19-21
- 12. P. G. Patil, S. S. Benchalli and Pallavi S. Mirajakar, "Generalized Star $\omega\alpha$ -Continuous Functions in Topological Spaces", (Submitted).
- 3. R. Staum, "The algebra of a Bounded Continuous Functions into a Nonarchimedian Field", Pacific Jl. Math., 50(1974), 169-185.

P. G. Patil/Associate Professor/

S. S. Benchalli/Professor/, Pallavi S. Mirajakar/Research Scholar/ Department of Mathematics/Karnatak University/ Dharwad/Karnataka/India

ISBN 978-93-84124-53-3