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Abstract: Let f: V(G) ® {1,2,…,p+q} be an injective function. For a vertex labeling “ f ”, the induced edge 

labeling f*(e=uv) is defined by, f*(e) = or . Then “ f ” is called a “Super Geometric mean 

labeling” if {f(V(G))}È{f*(e):eÎE(G)}={1,2,…,p+q}. A graph which admits Super Geometric mean labeling is 

called “Super Geometric mean graph”. Let f: V(G) ® {1,2,…,p+q+k-1} be an injective function. For a vertex 

labeling   “ f ”, the induced edge labeling f*(e=uv) is defined by, f*(e) = or . Then “f” is 

called a “k-Super Geometric mean labeling” if {f(V(G))}È{f*(e):eÎE(G)}={k,k+1,k+2,…,p+q+k-1}. A graph which 
admits k- Super Geometric mean labeling is called “k- Super Geometric mean graph”. 
In this paper we prove that “k- Super Geometric mean labeling” behavior for some standard graphs. 
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1. Introduction: All graphs in this paper are finite, 
simple and undirected graph G = (V,E) with p vertices 
and q edges. For a detailed survey of graph labeling 
we refer to Gallian[1]. For all other standard 
terminology and notations we follow Harary [2]. The 
concept of “Geometric mean labeling” has been 
introduced by S. Somasundaram, R. Ponraj and 
P.Vidhyarani in [4]. S.S.Sandhya, E. Ebin Raja Merly 
and B. Shiny introduced “Super Geometric mean 
labeling” in  [5]. 
In this paper, we investigate some standard graphs 
are  k-Super Geometric mean graphs. 
Now we will provide a brief summary of definitions 
and other informations which are useful for our 
present investigation. 
Definition: 1.1: A graph G=(V,E) with p vertices and 
q edges is called a “Geometric mean graph” if it is 

possible to label the vertices xÎV with distinct labels 
f(x) from 1,2,…,q+1 in such a way that when each edge 
e=uv is labeled with                           f(e=uv) = 

 or  then the edge labels are 

distinct. In this case, “ f ” is called a “Geometric mean 
labeling” of G. 

Definition : 1.2: Let f : V(G) ®{1,2,…,p+q} be an 
injective function. For a vertex labeling  “ f ”, the 
induced edge labeling f*(e=uv) is defined by, f*(e) = 

 or . Then “ f ” is called a 

“Super Geometric mean labeling” if 

{f(V(G))}È{f*(e):eÎE(G)}={1,2,…,p+q}.A graph which 

admits Super Geometric mean labeling is called 
“Super Geometric mean graph”. 

Definition: 1.3: Let f: V(G) ® {1,2,…,p+q+k-1} be an 
injective function. For a vertex labeling “ f ”, the 
induced edge labeling f*(e=uv) is defined by, f*(e) = 

or . Then “ f ” is called a “k-

Super Geometric mean labeling” if 

{f(V(G))}È{f*(e):eÎE(G)}={k,k+1,k+2,…,p+q+k-1}. A 
graph which admits k- Super Geometric mean 
labeling is called “k- Super Geometric mean graph”. 
Definition : 1.4: A Path Pn is a walk in which all the 
vertices are distinct. 
Definition :1.5: A graph obtained by joining a single 
pendant edge to each vertex of a path is called a 
Comb(PnAK1). 

Definition :1.6: The Ladder Ln, n³2 is the product 
graph PnxP2 and contains 2n vertices and 3n-2 edges. 
Theorem 1.7[5]: Path, Comb, Ladder and (PnAK1,2) 
are Super Geometric mean graphs. 
2. Main Results 
Theorem: 2.1: Any Path is a k- super Geometric 
mean graph. 
Proof: 
Let Pn = v1v2…vn be a path, 

Define a function f: V(Pn) ®{1,2,3,…, p+q+k-1} by, 

f(vi) = 2i-1+k, 1£i£n. 
Edges are labeled with, 

f(vivi+1) = 2i-1+k, 1£i£n-1 
Then we get distinct edge labels. 
Hence any path is a k- Super Geometric mean graph. 

 
Example : 2.2: 10 – Super Geometric mean labeling of P6 is displayed below. 

 
                                           Figure: 1 
Theorem : 2.3 
Combs (PnAK1) are k – super Geometric mean graphs. 
Proof: 

Let G be a graph obtained from a path Pn = v1v2…vn by joining a vertex ui to vi, 1£i£n. 
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Define a function f: V(G) ®{1,2,3,…, p+q+k-1} by, 

f(vi) = 4i-2+k, 1£i£n 

f(ui) = 4i-4+k, 1£i£n 
Edge labels are given by, 

f(vivi+1) = 4i-1+k, 1£i£n-1 

f(uivi) = 4i-3+k, 1£i£n 
Thus both vertices and edges together get distinct labels from  
{k, k+1, k+2, …, p+q+k-1}. 
Hence G is a k- super Geometric mean graph. 
Example : 2.4 
 8- Super Geometric mean labeling of P4AK1 is given below. 

 
                                          Figure: 2 
Theorem: 2.5: A graph obtained by attaching K1,2 at each pendant vertex of a Comb is a k- super Geometric 
mean graph. 
Proof: 
Let G1 be a comb and G be the graph obtained by attaching K1,2 at each pendant vertex of G1. 

Let its vertices be ui, vi, vi1, vi2, 1£i£n.  
The graph G = (PnAK1)AK1,2 given below. 
 

 
Figure: 3 

Define a function f: V(G)®{1,2,3,…,p+q+k-1} by, 
f(v11) = k 

f(vil) = 8i-9+k, 2£i£n 
f(v12) = k+2 

f(vi2) = 8i-7+k, 2£i£n 
f(v1) = k+4 

f(vi) = 8i-2+k, 2£i£n 
f(u1) = k+6 

f(ui) = 8i-4+k, 2£i£n 
Edges are labeled with, 

f(uiui+1) = 8i+k, 1£i£n-1 

f(uivi) = 8i-3+k, 1£i£n  
f(v1v11) = k+1 

f(vivil) = 8i-6+k, 2£i£n 

f(vivi2) = 8i-5+k, 1£i£n. 

\The edge labels are distinct. 
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Hence G admits a k-Super Geometric mean labeling. 
Example: 2.6 
15-Super Geometric mean labeling of (P4AK1,2) is shown below. 

 
                                                 Figure: 4 
Theorem : 2.7 
Ladders are k-Super Geometric mean graphs. 
Proof: 
Let Ln = Pn x P2 be a Ladder. 

Define a function f: V(Ln) ®{1,2,3,…,p+q+k-1} by, 

f(vi) = 5i-5+k, 1£i£n 
f(u1) = k+3 

f(ui) = 5i-3+k, 2£i£n 
Edges are labeled with, 
f(v1v2) = k+2 

f(vivi+1) = 5i-2+k, 2£i£n-1 

f(uiu+1) = 5i-1+k, 1£i£n-1 

f(uivi) = 5i-4+k, 1£i£n 

\ We get distinct edge labels. 
Hence “ f ” provides a k- super Geometric mean labeling. 
Example: 2.8 
 100 – Super Geometric mean labeling of L5 is shown below. 

 
                                           Figure: 5 
Theorem: 2.9: Let G be a graph obtained by attaching each vertex of Pn to the central vertex of K1,2. Then G is a 
k-Super Geometric mean graph. 
Proof: Let Pn be path u1u2…un and vi, wi be the vertices of K1,2 which are attached with the vertex ui of Pn. 

Define a function f: V(G) ®{1,2,3,…,p+q+k-1} by, 

f(ui) = 6i-4+k, 1£i£n 

f(vi) = 6i-6+k, 1£i£n 

f(wi) = 6i-2+k, 1£i£n 
Edge labels are given by, 

f(uiui+1) = 6i-1+k, 1£i£n-1 

f(uivi) = 6i-5+k, 1£i£n 

f(uiwi) = 6i-3+k, 1£i£n. 
From the above labeling pattern, we get 

{f(V(G))}È{f*(e):eÎE(G)}= {k, k+1, k+2,…,p+q+k-1}. 
Hence G is a Super Geometric mean graph. 
Example : 2.10 
1000- Super Geometric mean labeling of (P4AK1,2) is displayed below. 
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Figure: 6 
 
Theorem : 2.11 
Let G be  a graph obtained by attaching pendant edges to both sides of  each vertex of a path Pn. Then G is a k – 
Super Geometric mean graph. 
Proof: 
Consider a graph G which is obtained by attaching pendant edges to both sides of each vertex of a path Pn. 

Let ui, vi, wi, 1£i£n be the vertices of G. 

Define a function f: V(G) ® {1,2,3,…,p+q+k-1} by, 

f(ui) = 6i-2+k, 1£i£n 

f(vi) = 6i-4+k, 1£i£n 
f(w1) = k 

f(wi) = 6i-7+k, 2£i£n 
Edges are labeled with, 

f(uiui+1) = 6i+k, 1£i£n 

f(uivi) = 6i-3+k, 1£i£n 

f(uiwi) = 6i-5+k, 1£i£n 

\ We get distinct edge labels.  
Hence “ f ” provides a k- Super Geometric mean labeling. 
Example: 2.12 
27 – Super Geometric mean labeling of  G when n=4 is displayed below. 

 
                                          Figure: 7 
Theorem: 2.13 
Let G = PnAC3 be a graph obtained by attaching C3 to each vertex of a path Pn. Then G is a k- super Geometric 
mean graph. 
Proof: 
Consider a graph G which is obtained by attaching C3 to each vertex of a path Pn. 
Let Pn be a path u1u2…un. 

Let ui, vi, wi, 1£i£n be the vertices of C3. 

Define a function f: V(G) ®{1,2,3,…,p+q+k-1} 

f(ui) = 7i-2+k, 1£i£n 
f(v1) = k 

f(vi) = 7i-8+k, 2£i£n 

f(wi) = 7i-4+k, 1£i£n 
Edge labels are given by, 

f(uiui+1) = 7i+1+k, 1£i£n-1 

f(viui) = 7i-5+k, 1£i£n 

f(wiui) = 7i-3+k, 1£i£n 
f(v1w1) = k+1 

f(viwi) = 7i-7+k, 2£i£n. 
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In view of above labeling pattern, both vertices and edges together get distinct lables from {k, k+1, k+2,…, 
p+q+k-1}. 
Hence G is a k-Super Geometric mean graph. 
 

Example: 2.14 

19- Super Geometric mean labeling of P4AC3 is shown below. 

 
                                        Figure: 8 
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