k- SUPER GEOMETRIC MEAN GRAPHS

S.S.SANDHYA, E.EBIN RAJA MERLY, B.SHINY

Abstract: Let f: V(G) \rightarrow {1,2,...,p+q} be an injective function. For a vertex labeling "f", the induced edge labeling f*(e=uv) is defined by, f*(e) = $\left[\sqrt{f(u)f(v)}\right]$ or $\left[\sqrt{f(u)f(v)}\right]$. Then "f" is called a "Super Geometric mean labeling" if {f(V(G))} \cup {f*(e):e \in E(G)}={1,2,...,p+q}. A graph which admits Super Geometric mean labeling is called "Super Geometric mean graph". Let f: V(G) \rightarrow {1,2,...,p+q+k-1} be an injective function. For a vertex labeling "f", the induced edge labeling f*(e=uv) is defined by, f*(e) = $\left[\sqrt{f(u)f(v)}\right]$ or $\left[\sqrt{f(u)f(v)}\right]$. Then "f" is called a "k-Super Geometric mean labeling" if {f(V(G))} \cup {f*(e):e \in E(G)}={k,k+1,k+2,...,p+q+k-1}. A graph which admits k- Super Geometric mean labeling is called "k-Super Geometric mean graph".

In this paper we prove that "k- Super Geometric mean labeling" behavior for some standard graphs.

Key words: Super Geometric mean graph, k-super Geometric mean graph.

1. Introduction: All graphs in this paper are finite, simple and undirected graph $C = (V E)$ with p vortices	admits Super Geometric mean labeling is called "Super Geometric mean graph"
simple and undirected graph $G = (v, E)$ with p vertices	Super Geometric mean graph . $\mathbf{Definition}$, so let $f_{i} V(C) \rightarrow (a - b + b + b)$ be en
and q edges. For a detailed survey of graph labeling	Definition: 1.3: Let I: $V(G) \rightarrow \{1,2,,p+q+k-1\}$ be an injective function. For a context labeling "f " the
terminale mend netations we fellow Herry [1] The	injective function. For a vertex labeling 1, the
terminology and notations we follow Harary [2]. The	induced edge labeling $f^{*}(e=uv)$ is defined by, $f^{*}(e) =$
introduced by C Company denome D Denuei and	$ \sqrt{f(u)f(v)} $ or $ \sqrt{f(u)f(v)} $. Then "f" is called a "k-
DVille and in [] C.C.C. Ile a F. Flin Deis Mark	Super Geometric mean labeling" if
P.Vidnyarani in [4]. S.S.Sandnya, E. Edin Kaja Meriy	${f(V(G))} \cup {f^*(e):e \in E(G)} = {k,k+1,k+2,,p+q+k-1}.$ A
and B. Shiny introduced Super Geometric mean	graph which admits k- Super Geometric mean
labeling in [5].	labeling is called "k- Super Geometric mean graph".
In this paper, we investigate some standard graphs	Definition : 1.4: A Path P_n is a walk in which all the
are k-Super Geometric mean graphs.	vertices are distinct.
Now we will provide a brief summary of definitions	Definition :1.5: A graph obtained by joining a single
and other informations which are useful for our	pendant edge to each vertex of a path is called a
present investigation.	$Comb(P_nAK_i).$
Definition: 1.1: A graph $G=(V,E)$ with p vertices and	Definition :1.6: The Ladder L_n , $n \ge 2$ is the product
q edges is called a "Geometric mean graph" if it is	graph $P_n x P_2$ and contains 2n vertices and 3n-2 edges.
possible to label the vertices $x \in V$ with distinct labels	Theorem 1.7[5]: Path, Comb, Ladder and (P _n AK _{1,2})
f(x) from 1,2,,q+1 in such a way that when each edge	are Super Geometric mean graphs.
e=uv is labeled with $f(e=uv) =$	2. Main Results
$ \sqrt{f(u)f(v)} $ or $ \sqrt{f(u)f(v)} $ then the edge labels are	Theorem: 2.1: Any Path is a k- super Geometric
distinct. In this case, " f " is called a "Geometric mean	mean graph.
labeling" of G.	Proof:
Definition : 1.2: Let $f : V(G) \rightarrow \{1,2,\dots,p+q\}$ be an	Let $P_n = v_1 v_2 \dots v_n$ be a path,
injective function. For a vertex labeling "f", the	Define a function f: $V(P_n) \rightarrow \{1, 2, 3,, p+q+k-1\}$ by,
induced edge labeling $f^*(e=uv)$ is defined by, $f^*(e) =$	$f(v_i) = 2i - 1 + k, \ 1 \le i \le n.$
$\left[\sqrt{f(u)f(v)}\right]$ or $\left[\sqrt{f(u)f(v)}\right]$. Then "f" is called a	Edges are labeled with,
"Super Geometric mean labeling" if	$f(v_i v_{i+1}) = 2i - 1 + k, 1 \le i \le n - 1$
${f(V(G))} \cup {f^*(e):e \in E(G)} = {1,2,,p+q}.A \text{ graph which}$	Then we get distinct edge labels.

Hence any path is a k- Super Geometric mean graph.

Example : 2.2: 10 – Super Geometric mean labeling of P₆ is displayed below.

Theorem : 2.3

Combs (P_nAK_i) are k – super Geometric mean graphs.

Proof:

Let G be a graph obtained from a path $P_n = v_1v_2...v_n$ by joining a vertex u_i to v_i , $1 \le i \le n$.

Define a function f: V(G) \rightarrow {1,2,3,..., p+q+k-1} by, f(v_i) = 4*i*-2+k, 1≤*i*≤n f(u_i) = 4*i*-4+k, 1≤*i*≤n Edge labels are given by, f(v_iv_{i+1}) = 4*i*-1+k, 1≤*i*≤n-1 f(u_iv_i) = 4*i*-3+k, 1≤*i*≤n Thus both vertices and edges together get distinct labels from {k, k+1, k+2, ..., p+q+k-1}. Hence G is a k- super Geometric mean graph.

Example : 2.4

8- Super Geometric mean labeling of P₄AK₁ is given below.

Figure: 2

Theorem: 2.5: A graph obtained by attaching $K_{1,2}$ at each pendant vertex of a Comb is a k- super Geometric mean graph.

Proof:

Let G_1 be a comb and G be the graph obtained by attaching $K_{1,2}$ at each pendant vertex of G_1 .

Let its vertices be u_i , v_i , v_{i1} , v_{i2} , $1 \le i \le n$.

The graph $G = (P_nAK_1)AK_{1,2}$ given below.

Figure: 3

Define a function f: V(G) \rightarrow {1,2,3,...,p+q+k-1} by, $f(v_{ij}) = k$ $f(v_{il}) = 8i-9+k, 2 \le i \le n$ $f(v_{12}) = k+2$ $f(v_{i_2}) = 8i-7+k, 2 \le i \le n$ $f(v_1) = k+4$ $f(v_i) = 8i - 2 + k, 2 \le i \le n$ $f(u_1) = k+6$ $f(u_i) = 8i - 4 + k$, $2 \le i \le n$ Edges are labeled with, $f(u_i u_{i+1}) = 8i+k, 1 \le i \le n-1$ $f(u_iv_i) = 8i-3+k, 1 \le i \le n$ $f(v_1v_{11}) = k+1$ $f(v_i v_{il}) = 8i-6+k, 2 \le i \le n$ $f(v_i v_{i2}) = 8i - 5 + k, 1 \le i \le n.$ \therefore The edge labels are distinct.

Hence G admits a k-Super Geometric mean labeling. Example: 2.6 15-Super Geometric mean labeling of $(P_4AK_{1,2})$ is shown below. 30 22 15

Figure: 4 Theorem : 2.7 Ladders are k-Super Geometric mean graphs. **Proof:** Let $L_n = P_n x P_2$ be a Ladder. Define a function f: V(L_n) \rightarrow {1,2,3,...,p+q+k-1} by, $f(v_i) = 5i-5+k, 1 \le i \le n$ $f(u_1) = k+3$ $f(u_i) = 5i - 3 + k, 2 \le i \le n$ Edges are labeled with, $f(v_1v_2) = k+2$ $f(v_i v_{i+1}) = 5i-2+k, 2 \le i \le n-1$ $f(u_iu_{i+1}) = 5i-1+k, 1 \le i \le n-1$ $f(u_iv_i) = 5i-4+k, 1 \le i \le n$ \therefore We get distinct edge labels. Hence "f" provides a k- super Geometric mean labeling. Example: 2.8

100 – Super Geometric mean labeling of L_5 is shown below.

Figure: 5

Theorem: 2.9: Let G be a graph obtained by attaching each vertex of P_n to the central vertex of K_{1,2}. Then G is a k-Super Geometric mean graph.

Proof: Let P_n be path $u_i u_2 \dots u_n$ and v_i , w_i be the vertices of $K_{i,2}$ which are attached with the vertex u_i of P_n . Define a function f: V(G) \rightarrow {1,2,3,...,p+q+k-1} by,

 $f(u_i) = 6i - 4 + k, 1 \le i \le n$ $f(v_i) = 6i - 6 + k, 1 \le i \le n$

 $f(w_i) = 6i - 2 + k, 1 \le i \le n$

Edge labels are given by,

 $f(u_i u_{i+1}) = 6i - 1 + k, 1 \le i \le n - 1$

 $f(u_iv_i) = 6i-5+k, 1 \le i \le n$

 $f(u_iw_i) = 6i-3+k, 1 \le i \le n.$

From the above labeling pattern, we get

 $\{f(V(G))\} \cup \{f^*(e): e \in E(G)\} = \{k, k+1, k+2, ..., p+q+k-1\}.$

Hence G is a Super Geometric mean graph.

Example : 2.10

1000- Super Geometric mean labeling of $(P_4AK_{1,2})$ is displayed below.

Figure: 6

Theorem : 2.11

Let G be a graph obtained by attaching pendant edges to both sides of each vertex of a path P_n . Then G is a k – Super Geometric mean graph.

Proof:

Consider a graph G which is obtained by attaching pendant edges to both sides of each vertex of a path P_n . Let u_i , v_i , w_i , $1 \le i \le n$ be the vertices of G.

Define a function f: $V(G) \rightarrow \{1,2,3,...,p+q+k-1\}$ by,

$$\begin{split} f(u_i) &= 6i\text{-}2\text{+}k, 1 \leq i \leq n \\ f(v_i) &= 6i\text{-}4\text{+}k, 1 \leq i \leq n \\ f(w_i) &= k \\ f(w_i) &= 6i\text{-}7\text{+}k, 2 \leq i \leq n \\ \text{Edges are labeled with,} \\ f(u_iu_{i+1}) &= 6i\text{+}k, 1 \leq i \leq n \\ f(u_iv_i) &= 6i\text{-}3\text{+}k, 1 \leq i \leq n \\ f(u_iw_i) &= 6i\text{-}5\text{+}k, 1 \leq i \leq n \\ \therefore \text{ We get distinct edge labels.} \\ \text{Hence "f" provides a k- Super Geometric mean labeling.} \end{split}$$

Example: 2.12

27 - Super Geometric mean labeling of G when n=4 is displayed below.

Theorem: 2.13

Let $G = P_nAC_3$ be a graph obtained by attaching C_3 to each vertex of a path P_n . Then G is a k- super Geometric mean graph.

Proof:

Consider a graph G which is obtained by attaching C_3 to each vertex of a path P_n . Let P_n be a path $u_1u_2...u_n$.

Let u_i , v_i , w_i , $1 \le i \le n$ be the vertices of C_3 .

Define a function f: V(G) \rightarrow {1,2,3,...,p+q+k-1} f(u_i) = 7*i*-2+k, 1≤*i*≤n f(v_i) = k f(v_i) = 7*i*-8+k, 2≤*i*≤n f(w_i) = 7*i*-4+k, 1≤*i*≤n Edge labels are given by, f(u_iu_{i+1}) = 7*i*+1+k, 1≤*i*≤n-1 f(v_iu_i) = 7*i*-5+k, 1≤*i*≤n f(w_iu_i) = 7*i*-3+k, 1≤*i*≤n f(v_iw_i) = k+1 f(v_iw_i) = 7*i*-7+k, 2≤*i*≤n. In view of above labeling pattern, both vertices and edges together get distinct lables from $\{k, k+1, k+2,..., p+q+k-1\}$.

Hence G is a k-Super Geometric mean graph.

Example: 2.14

19- Super Geometric mean labeling of P_4AC_3 is shown below.

References:

- 1. Gallian. J.A, "A dynamic survey of graph labeling". The electronic Journal of Combinatorics 2011, $18 \neq$ DS6.
- J. Jeba Jesintha, K. Ezhilarasi Hilda, Sub Divided Uniform Shell Bow Graphs Are one Modulo; Mathematical Sciences international Research Journal ISSN 2278 – 8697 Vol 3 Issue 2 (2014), Pg 645-647
- 3. Harary F, 1988, "Graph Theory", Narosa publishing House, New Delhi.
- 4. Jeyanthi. P, Ramya.D and Thangavelu. P, "Some Constructions of k-super Mean graphs",International Journal of Pure and Applied Mathematics,Volume 56,No.1,2009,77-86
- 5. Soma Sundaram S, Ponraj. R and Vidhyarani. P "Geometric mean labeling of graphs", Bulletin of Pure and Applied Sciences, 30E(2), (2011) p.153-160.
- 6. Balogun, Folorunso Ojo, Adenegan, Kehinde Emmanuel, Rolle's and Mean Value theorems: Meeting Points and Contrasts; Mathematical

Sciences International Research Journal ISSN 2278 - 8697 Vol 2 Issue 2 (2013), Pg 114-116

- Sandhya.S.S, Ebin Raja Merly. E and Shiny. B "Super Geometric mean labeling", presented in 23rd International conference of Forum for Interdisciplinary Mathematics (FIM) on Interdisciplinary Mathematical, statistical and Computational Techniques (2014).
- 8. Chander Bhan Mehta, Susheel Kumar, Stability of Two Superposed Porous Elastico-Viscous; Mathematical Sciences International Research Journal ISSN 2278 – 8697 Vol 3 Issue 1 (2014), Pg 238-240
- 9. Sandhya.S.S, Ebin Raja Merly. E and Shiny. B " Some More Results on Super Geometric Mean labeling", International Journal of Mathematical Archieve – 6(1), 2015, p.121-132.
- V. Chandrasekar ,R.Vijayaraj ,S. Dhanasekar, Oscillation theorems for Second Kind Advanced; Mathematical Sciences International Research Journal ISSN 2278 - 8697 Vol 3 Issue 1 (2014), Pg 208-213

S.S.Sandhya/Department of Mathematics/Sree Ayyappa College for Women/ Chunkankadai – 629 003/Kanyakumari District/Tamil Nadu. E.Ebin Raja Merly/Department of Mathematics/ Nesamony Memorial Christian College/ Marthandam – 629 165/Kanyakumari District/ Tamil Nadu. B.Shiny/Research Scholar/Department of Mathematics/ Nesamony Memorial Christian College/

Marthandam – 629 165/Kanyakumari District/ Tamil Nadu.