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Abstract: A ( ),p q  graph  G is said to be directed even-edge-graceful if there exists an orientation of G and  a 

labeling f of the arcs  A  of  G with {1 , 2, 3, ..., 2  }q   such that the induced mapping g on V defined by 

( ) [ ( ) ( )]( 2 )g v f v f v mod s+ -= - are distinct and even, where ( )f v
+ =  the sum of  the labels of all arcs with 

head v and ( )   f v
- = the sum of  the labels of all arcs with tail v , where    ( , )s max p q= . A graph  G  that 

admits a directed even-edge-graceful labeling is called a directed even-edge-graceful graph. In this paper, we 
investigate directed even-edge-gracefulness of wheel graph. 
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Introduction: All graph in this paper are finite, 
simple and directed. Terms not defined here are used 

in the sense of Harary [7]. The symbols ( )V G and 

( )E G denote the vertex set and edge set of a graph 

 G . The cardinality of the vertex set is called the 
order of G denoted by p.  The cardinality of the edge 
set is called the size of G denoted by q. A graph with p 

vertices and q edges is called a ( , )p q   graph.  A 

graph labeling is an assignment of integers to the 
vertices or edges or both subject to certain 
conditions.  Labeled graph serve as useful models for 
a broad range of applications [1], [2].   A good account 
on graph labeling problems can be found in the 
dynamic survey of Gallian [6]. 

A graph  G  is called a graceful labeling if f is an 

injection from the vertices of  G  to the set 

{0,1 , 2, , }q¼  such that, when each edge xy is 

assigned the label ( ) ( )f x f y-  , the resulting edge 

labels are distinct. A graph ( ),G V E is said to be 

edge-graceful if there exists a bijection f  fromEto 

{1,2, ,| |}E¼  such that the induced mapping f
+
 

from V  to {0,1, , V 1}¼ -  given by, 

( ) ( ( )) (| |)f x f xy mod V
+ = å  taken over all edges xy

incident at x is a bijection. 

A necessary condition for a graph  G  with p vertices 
and q edges to be edge-graceful is 

( ) ( ) ( )
1

1  
2

p p
q q mod p

+
+ º .  Gayathri and 

Duraisamy introduced the concept of even-edge- 
graceful labeling in [8] and further studied in [9]-[11]. 
Bloom and Hsu[3]-[5] extended the notion of graceful 
labeling to directed graphs. Gayathri and  Vanitha[12] 
extended the concept of edge-graceful graphs to 
directed graphs and further studied in[13], [14].  A 

( , )p q  graph G is said to be directed edge-graceful if 

there exists an orientation of  and a labeling f of the 

arcs A of  G  with {1,2,..,q}  such that the induced 

mapping g on V defined by 

( ) ( ) ( ) (  )g v f v f v mod p
+ -= -é ùë û is a bijection where, 

( )f v
+ =  the sum of  the labels of all arcs with head v

and ( )   f v
- = the sum of  the labels of all arcs with 

tail . A graph is said to be directed edge-graceful 

graph if it has a directed edge-graceful labeling. 
In this paper, we extend the notion of even-edge-
graceful labeling to directed graph. Here we 
investigate directed even-edge-gracefulness of wheel 
graph.   
2.Main results 
Definition 2.1: 

The Wheel
nW is  defined   as 

1n n
W C K= + where 

n
C  

is a cycle of length n and the number of vertices in a 

wheel is 1.n +  

Theorem 2.2:  

The wheel 
nW  , n 4³ is directed even-edge-graceful  

for ( )0  8q modº  

Proof: 

Let ( ) { }1 2 3
 , , , ,

n n
V W v v v v v= ¼ be the set of vertices. 

Now, we orient the edges of nW , such that the arc set 

A is given by 

( ) ( )i i

q
A  {e v, v ,1 i  }

2
n

W = = £ £  

( )2i q 2 i i 1

2

{  e v ,v ,2 i n}+ - -= £ £ is 
2i q{  e2i q2i q2i q2i q2i q  

q 1 n{e (v ,v )}=q 1 n{e (vq 1 nq 1 n  

The  orientation of the edges are given as in the Fig. 1 
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Fig. 1: 

nW  with orientation 

We define edge labels as follows : 

( ) 2  ,1   
2

i

q
f e i i= £ £ ;  ( ) 2qf e q=   ;  

2
( ) 3 2 ,   1

2
i

q
f e q i i q

+
= - £ £ - ; 

Then the values of ( ), ( )i if v f v+ -  are computed as 

under: 

( ) 2  ,1  1; if v q i n+ = £ £ -  

( ) ( )3 ;       0nf v q f v+ += =  

( ) 2 2 2 , 2  ;if v q i i n- = + - £ £  

( )  ( 1)f v n n- = +  

( )1 2 ;f v q- =  

The induced vertex labels are 

  ( ) 2 2, 2 1 ig v i i n= - £ £ - . 

( )1 0, ( ) 4 2, ( ) 3ng v g v n g v n= = - =  

Clearly, 

( ) { }0,2,4,..,2 4,4 2,3g V n n n= - -  

   {0,2,4, ,2 2}sÍ ¼ - , 

where 2s q n= =  

So, it follows that all the vertex labels are distinct and 

even. Hence, the wheel nW  is directed even-edge-

graceful  for all ( )0  8q modº  

The directed even-edge - graceful labeling of 
8W  is 

given in Fig. 2                                             
 

 
Fig.2 :Directed even-edge-graceful labeling of 

8W  

 

Theorem 2.3: 

The wheel graph 
nW  is directed even-edge-graceful  

for ( )2  8q modº  

Proof: 

Let ( ) { }1 2 3 , , , ,n nV W v v v v v= ¼ be the set of vertices. 

Now, we orient the edges of 
nW , such that the arc set 

A is given by 

( ) ( ) { , ,1 1}
2

n i i

q
A W e v v i= = £ £ -  

( )2i q 2 i i 1

2

{  e v ,v ,2 i n}+ - -= £ £2i q{  e2i q2i q2i q2i q2i q  

q 1 n{e (v ,v )}=q 1 n{e (vq 1 nq 1 n ( )q n

2

{e v ,v }= (q n({e v ,(q n(  

 

 
 
The edges and their orientation are given in Fig. 3 
     

Fig. 3: 
nW with orientation  

We define edge labels as follows : 

2
( ) 2 2, 1 

2
i

q
f e i i

-
= + £ £ ;   

2
( ) 3 2 2,   2

2
i

q
f e q i i q

+
= - - £ £ -   ; 

( ) 2 2qf e q= - ;      

2

( ) 2qf e = ;  
1( ) 2qf e q- =   ; 

Then the values of ( ), ( )i if v f v+ -  are computed as 

under. 

( ) 2  ,1  2;if v q i n+ = £ £ -  

( ) ( )1 3 ;     2 2    n nf v q f v q+ +
- = = -  

( ) ( )12;      2 2f v f v q+ -= = -  

( )1 2 2nf v n-
- = +  

( ) 2 2; nf v q- = +  

( ) 2 2 ,1 2if v q i i n- = - £ £ -  

( ) ( )   1 2f v n n- = + -  

The induced vertex labels are 
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( ) 2 , 1 2ig v i i n= £ £ -  

( )1  2 2ng v q- = - ; 

( ) 2 4,    ng v q= - ( ) 4g v q= +  

Clearly, 

( ) { }2,4,..,2 4,2 2,2 4, 4g V n q q q= - - - +

 {0,2,4, ,2 2}sÍ ¼ - , where 2s q n= =  

So, it follows that all the vertex labels are distinct and 

even. Hence, the wheel nW  is directed even-edge-

graceful  for all ( )2  8q modº  

The directed even-edge - graceful labeling of 
5W  is 

given in Fig. 4. 
 

 
 Fig. 4:Directed even-edge-graceful   labeling of 

5W  

Theorem 2.4: 

The wheel graph 
nW  is directed even-edge-graceful  

for ( )6  8q modº . 

Proof: Let ( ) { }1 2 3 , , , ,n nV W v v v v v= ¼ be the set of 

vertices. Now, we orient the edges of nW , such that 

the arc set A is given by 

( ) ( ) { , ,1 1}
2

n i i

q
A W e v v i= = £ £ -  

( )2i q 2 i i 1

2

{  e v ,v ,2 i n}+ - -= £ £2i q{  e2i q2i q2i q2i q2i q  

q n 1{e (v },v )=q n 1{e (vq n 1q n 1 ( )q n

2

{e v ,v }= (q n({e v ,(q n(  

 
 
The edges and their orientation are given in Fig.5                                    
Fig. 5 : The ordinary labeling of 

nW  

We define edge labels as follows : 

1( ) 2f e = ;  
2( ) 4f e =  ;  

3( )f e q= ;  

( ) 2 2,  4
2

i

q
f e i i= - £ £ ; 

8
( ) 3 2 2,   ;

2
i

q
f e q i i q

+
= - + £ £  

2

2

( ) 2 2qf e q+ = - ; 4

2

( ) 2 4qf e q+ = - ; 
6

( ) 2
2

q
f q

+
=  

Then the values of ( ), ( )i if v f v+ -
are computed as 

under. 

( )1 3 2f v q+ = + ; ( ) 3 4nf v q- = +

( ) ( ) ( )2 3 42 ; 2 ; 3 ;f v q f v q f v q+ + += = =  

( ) ( ) ( )2 3 42 ; 2 ; 3 ;f v q f v q f v q+ + += = =  

( ) 2  , 5  1;if v q i n+ = £ £ -  

( ) ( )0;  2;nf v f v q+ += = -  

( ) ( )1 20; 2 2;f v f v q- -= = -  

( ) ( )3 42 4; 2 ;f v q f v q- -= - =  

( ) 2 2 4 , 5  1;if v q i i n- = - + £ £ -  

( ) ( )1 2   f v n n- = - +  

The induced vertex labels are 

1 2

3 4

( ) 2; ( ) 2;

 ( ) 4; ( ) 0; 

g v q g v

g v q g v

= + =

= + =
 

( ) 2 4, 5   ; ( ) 2 4ig v i i n g v q= - £ £ = -  

Clearly, 

( ) { }g V 0,2,4,..,2n 4,2q 4,q 2= - - +  

{0,2,4, ,2s 2}Í ¼ - , where s=q=2n 

So, it follows that all the vertex labels are distinct and 

even. Hence, the wheel nW  is directed even-edge-

graceful  for all ( )6  8q modº  

The directed even-edge - graceful labeling of 
7W  is 

given in Fig. 6. 

 
Fig. 6:Directed even-edge-graceful labeling of 

7W  

Theorem 2.5: The wheel graph 
nW  is directed even-

edge-graceful  for ( )4  8q modº  

Proof: Let ( ) { }1 2 3 , , , ,n nV W v v v v v= ¼ be the set of 

vertices. Now, we orient the edges of nW , such that 

the arc set A is given by 
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( ) ( )i i

q
A  {e v, v ,1 i  }

2
n

W = = £ £  

( )2i q 2 i i 1

2

{  e v ,v ,2 i n}+ - -= £ £2i q{  e2i q2i q2i q2i q2i q  

q 1 n{e (v ,v )}=q 1 n{e (vq 1 nq 1 n
 

The edges and their orientation are given in Fig. 1 
We define edge labels as follows : 

( ) 2 ,1 1;
4

i

q
f e i i= £ £ -  

( )( ) 2 1 , 2;       
4 2

i

q q
f e i i= + £ £ -  

1
2

3
(  ) 2

2
q

q
f e q

-
= -  

2 3 4
( ) 3 2 ,

2 4
i

q q
f e q i i

+ -
= - £ £    ;  

3
( ) 3 2 2, 2;

4
i

q
f e q i i q= - - £ £ -  

1
   

2

( ) ;   ( ) 2
2

q q

q
f e q f e q-= = -   ;      

( ) 2qf e q= ; 

Then the values of ( ), ( )i if v f v+ -
 are computed as 

under. 

( ) 2 ,1 1if v q i n+ = £ £ - ; 

( ) 3 ; ( ) 0;nf v q f v+ += =  

( ) 2 2 2,1 ;
2

i

n
f v q i i- = - + £ £  

( ) 2
2 2 , 1

2
i

n
f v q i i n- +

= - £ £ -  

( ) ( ) ( )3 ;   1nf v n f v n n- -= = +  

The induced vertex labels are 

( ) ( )    3 ,        ;ng v n g v n= =  

1 2 3 ( ) 0,    ( ) 2,    ( ) 4,g v g v g v= = =  

( ) ( ) 2 2, 4     6 ;
2

i

n
g v i i and n= - £ £ >  

( )( ) 2 1 2, 1 1 
2

i

n
g v i i n= + - + £ £ -  

Clearly,

( ) { }0,2,4,.., 2, 2, ,2 2, ,  3g V n n n n n= - + ¼ -  

{0,2,4, ,2 2}sÍ ¼ - , where 2s q n= =  

So, it follows that all the vertex labels are distinct and 

even. Hence, the wheel  is directed even-edge-
graceful  for all 

( )4  8q modº  .  The directed even-edge - graceful 

labeling of 
6W  is given in Fig. 6. 

 
Fig. 6:Directed even-edge-graceful labeling of 

6W  

Theorem 2.6: The wheel graph 
nW  is directed even-

edge-graceful  for n 3=  

Proof: The directed even-edge-graceful of 3W  is 

given in Fig. 7 

 
Fig. 7:Directed even-edge-graceful labeling of 3W  

Clearly, ( ) { }0,2,4,6 {0,2,4, ,2 2}g V s= Í ¼ - , 

where 2s q n= = .  So, it follows that all the vertex 

labels are distinct and even. Hence, the wheel nW  is 

directed even-edge-graceful  for n 3=   . 
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