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Abstract: We studied the unsteady flow of a incompressible viscous fluid in a 
rotating parallel plate channel bounded on one side by a porous bed under the 
influence of a uniform transverse magnetic field taking hall current into 
account. The perturbations are created by a constant pressure gradient along 
the plates in addition to the non-torsional oscillations of the upper plate. The 
flow in the clean fluid region is governed by Navier-Stoke’s equations while in 
the porous bed the equations are based on Darcy-Lapwood model. The exact 
solutions of the velocity in the clean fluid and the porous medium consist of 
steady state and transient state. The time required for the transient state to 
decay is evaluated in detail and ultimate quasi-steady state solution has been 
derived analytically, its behaviour computationally discussed with reference to 
the various governing parameters. The shear stresses on the boundaries and the 
mass flux are also obtained analytically and their behaviour is computationally 
discussed. 
 
Keywords: Hall effects, MHD flows, Porous bed, unsteady flows and Rotating 
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Introduction: Flow of a viscous fluid in rotating channels is of considerable 
importance due to the occurrence of various natural phenomena and for its 
application in various technological situations which are governed by the action 
of Coriolis force. The broad subjects of oceanography, meteorology, 
atmospheric science and limnology all contain some important and essential 
features of rotating fluids. The viscous fluid flow problems in rotating medium 
under different conditions and configurations are investigated by many 
researchers in the past to analyze various aspects of the problem. The study of 
simultaneous effects of rotation and magnetic field on the fluid flow problems 
of a viscous incompressible electrically conducting fluid may find applications 
in the areas of geophysics, astrophysics and fluid engineering. An order of 
magnitude analysis shows that, in the basic field equations, the effects of 
Coriolis force are more significant as compared to that of inertial and viscous 
forces. Furthermore, it may be noted that Coriolis and magneto hydro dynamic 



Mathematical Sciences International Research Journal  Vol 4 Spl Issue   ISSN  2278 – 8697 

 

IMRF Journals  30 

 

forces are comparable in magnitude and Coriolis force induces secondary flow 
in the flow-field.  
A large variety of processes of interest to industry and society involve the flow 
of fluids through porous media. Examples include the use of filtration to purify 
water and treat sewage, membranes to separate gases, the chemical reactors 
having porous catalysts supports. The mathematical modelling and simulation 
of the flow of fluids through porous media are important for designing and 
controlling a number of industrial processes including the production of fluids 
from underground reservoir and remediation of underground water resources. 
The simulation of flow is carried out using constitutive and conservative 
relations based on a macroscopic representation of porous media. There is a 
considerable interest in the recent years in the study of flow past a naturally 
permeable bed, with appropriate boundary conditions at a naturally permeable 
boundary. The usual conditions are, the normal flux is continuous and the 
tangential velocity is zero. The former is completely satisfactory but the latter is 
clearly only an approximation.  As an alternative to these no-slip boundary 
conditions Beavers and Joseph [2] postulated, for the first time, the slip 
boundary condition which they had verified experimentally. The existence of 
the slip at the porous bed, due to the transfer of momentum from the free flow 
to Darcy flow which sets up the drag, is connected with presence of a very thin 
boundary layer of stream wise moving fluid just beneath the nominal surface of 
the permeable material. The fluid in this layer is pulled along by the flow in the 
channel.  
Although the experiments were performed by Beavers and Joseph to test the 
validity of the proposed slip boundary conditions, owing to in adequate 
apparatus and instruments, the accuracy of experimental results was not 
sufficient to permit conclusive evaluation of   the proposed analytical model 
although the existence of a slip velocity was confirmed qualitatively. Later 
experiments by Beavers, Sparrow and Magnuson [1], Rajasekhar et.al [5] 
investigated a steady laminar flow of forced convection through a channel 
having on porous bounding wall. They have taken into account the velocity slip 
at the surface of the porous medium and the contribution of heat due to viscous 
dissipation.  Although the slip at the nominal surface was established based on 
the extension of a thin boundary layer just beneath the nominal surface 
attention was not focused on the analytical determination of the boundary layer 
thickness. Later Channabassappa and Ramanna [3] have determined analytically 
this boundary layer thickness. Rudraiah and Veerabhadraiah [6] have extended 
this analysis to include the buoyancy force. Rajasekhara [4] has performed the 
experiments to study the laminar flow characteristics in a composite channel 
considering Poiseuille flow, Couette flow and free surface flow.  The aim of his 
experimental study was to determine the values of the slip parameter lower 
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than that of Beavers & Joseph [2].  Such lower values are of importance in the 
design of porous bearings.  Auxiliary experiments were also conducted to 
measure the values of k, the permeability of the porous medium. His 
experiments showed that for a particular porous materials namely natural sand 
a =0.01 as compared witha =0.1 of Beavers & Joseph [2] for foametal, and is 
independent of the depth of flow above bed.  His experimental results were 
found to be in fair agreement with the analytical model which contains slip 
velocity at the permeable surface, except the mass flow rate which shows a 
slight deviation between experimental and theoretical data. Later Sasthry [7] 
studied the effect of the thickness of the porous lining on one side of the plate 
flow through a rotating parallel plate channel. And he discussed the flow in a 
rotating parallel plate channel with porous lining on both sides. In this paper, 
we discuss the unsteady flow of a incompressible viscous fluid in a rotating 
parallel plate channel bounded on one side by a porous bed under the influence 
of a uniform transverse magnetic field taking hall current into account.  
Formulation and solution of the problem:  We consider the unsteady flow 
of an in compressible viscous fluid in a rotating parallel plate channel bounded 
on one side by a porous bed subjected to a uniform transverse magnetic field 
normal to the channel. In the initial undisturbed state both the plates and the 

fluid rotate with the same angular velocityΩ . At t >0 the fluid is driven by a 
constant pressure gradient parallel to the channel walls and in addition the 
upper plate perform non-torsional oscillations in its own plane. 
We choose a Cartesian system O(x, y, z) such that the boundary walls are at z=0 
and z=l. Z-axis being the axis of rotation of the plates. The fluid medium 
consists of two zones namely zone 1and zone 2. Zone 1 consists of clean fluid 
governed by Navier-Stokes equations and zone 2 corresponds to the flow 
through porous bed governed by Darcy-Lapwood equations. At the interface the 
fluid satisfies the continuity condition of velocity and shear stress. The unsteady 
hydro magnetic equations governing the incompressible viscous fluid in zone 1 
under the influence of transverse magnetic field with reference to a frame 

rotating with a constant angular velocity Ω  are 
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 The Darcy-Lapwood equations governing the flow through porous 
medium with respect to the rotating frame zone 2 
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 Where (u, v) and (up, vp) are velocity components along O(x, y) 

directions respectively. ρ the density of the fluid ,s  the conductivity of the 
medium,  µe   the magnetic permeability, n  the coefficient of kinematic 
viscosity, 

effn   the coefficient of effective kinematic viscosity, k the permeability 

of the medium, 
oH is the applied magnetic field and d    is the porosity. Since 

the plates extends to infinity along x and y directions, all the physical quantities 
except the pressure depend on z and t alone. Hence u, v and up, vp are function 

of z and t alone and hence the respective equations of continuity are trivially 
satisfied. When the strength of the magnetic field is very large, the generalized 

Ohm’s law is modified to include the Hall current, so that 
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           Where, q is the velocity vector,  H  is the magnetic field intensity vector, 

E  is the electric field, J is the current density vector, ew is the cyclotron 

frequency, 
et  is the electron collision time, s  is the fluid conductivity  and 

eμ

is the magnetic permeability. In equation (2.5) the electron pressure gradient, 
the ion-slip and thermo-electric effects are neglected.  We also assume that the 
electric field   E=0 under assumptions reduces to  

vHσμJmJ 0eyx =+                     (2.6)      

uHσμJmJ 0exy -=-                   (2.7)     

        where eeτωm =   is the hall parameter.  

On solving equations (2.6) and (2.7) we obtain 
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 Using the equations (2.8) and (2.9) the equations of the motion with 
reference to rotating frame zone 1 are given by 



Mathematical Sciences International Research Journal  Vol 4 Spl Issue   ISSN  2278 – 8697 

 

ISBN 978-93-84124-40-3                                                                                                                33 

 

u)(mv
)mρ(1

Hσμ

dz

ud

x

p

ρ

1
v2Ω

t

u
2

2

0

2

e

2

2

-
+

++
¶
¶

-=-
¶
¶

n     (2.12) 

mu)(v
)mρ(1

Hμ

dz

vd

y

p

ρ

1
u2Ω

t

v
2

2

0

2

e

2

2

+
+

-+
¶
¶

-=+
¶
¶ s

n      (2.13) 

           The Darcy-Lapwood equations governing the flow through porous 
medium with respect to the rotating frame zone 2 are given by  
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Let   
ppp ivuq  ,iyxξ,ivuq +=-=+=  

Now combining equations (2.12) and (2.13), we obtain 
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and combining equations (2.14) and (2.15) , we obtain  
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 The boundary and initial conditions are 
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At the interface we allow slip governed by Beaver-Joseph condition 
(Dimensional form) 
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 where Bq  is  the slip velocity  and  a  is  the non-dimensional number 

(slip parameter). Also at the interface,  
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is the applied pressure gradient  
The corresponding non-dimensional boundary and initial conditions are 
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The Beaver-Joseph condition reduces to 
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The interfacial condition is 
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            Taking Laplace transforms of equations (2.23) and (2.24) using initial 
condition (2.26) to (2.27). We obtained the solutions q and qB. 
The shear stresses on the upper plate and lower plate are given by 
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Results and Discussion: The slip velocity q B   has been calculated using B-J 

condition (2.33) and is governed by the expression (2.44). The velocity profiles 
for u and v in the clean fluid region have been drawn figures (1-8) for the 
variations in the governing parameters and fixing the other parameters (

3.0,1,1 === dba , 4/,2.1,5.0 pwba === ). We notice that u enhances with 

E or m and reduces with M or D-1 in either case of smaller and larger thickness 
of porous bed (fig 1-8). The resultant velocity however enhances with E and m 
and reduces with M and D-1 irrespective of the thickness of the porous bed and 
is always directed away from the central axis of the channel with phase 
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difference greater than 4/7p  from the direction of the imposed pressure 
gradient tabulated. The slip velocities uB and vB have been calculated at 
tabulated in the tables (1 and 2) for the different variations in the governing 
parameters. The slip velocity uB enhances with its magnitude with increasing in 
E, m, M and D-1 for the smaller and larger thickness of porous bed (Table 1). The 
slip velocity vB enhances with its magnitude increase in E or m while reduces 
with increases in M (or) D-1 for the irrespective thickness of porous bed (Table 
2). The shear stresses of the upper and lower plate are evaluated and tabulated 

in tables (3-6). Table (3) indicates 
xt  for variations in the governing parameters 

in case of smaller and larger thickness of the porous bed. The table 4 represents 

to these variations for 
yt  for the upper plate. We find that 

xt   and  
yt   reduces 

with E or m irrespective of thickness (0.2 & 0.5), and an increasing in M or D-1 

enhances  
xt  and 

yt  reduces irrespective of thickness (0.2 & 0.5).  

Graphs and Tables: 

I. Velocity Profiles for u & v when the thickness of the porous bed 
(h=0.2) is small 

 
Figure 1. The velocity profile for u against E with 1,1000,2 1 === - mDM  

 
Figure 2. The velocity profile for v against E with 1,1000,2 1 === - mDM  
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Figure 3. The velocity profile for u against M with 1,1000,01.0 1 === - mDE  

 

 
Figure 4. The velocity profile for v against M with 1,1000,01.0 1 === - mDE  

 

 
Figure 5. The velocity profile for u against D-1 with 1,2,01.0 === mME  

0

0.5

1

1.5

0.2 0.7

u

 

z 

M=2

M=5

M=8

M=10

-0.15

-0.1

-0.05

0

0.2 0.7

v

 

z 

M=2

M=5

M=8

M=10

0

0.5

1

1.5

0.2 0.7

u

 

z 

D‾¹=1000 

D‾¹=2000 

D‾¹=3000 

D‾¹=4000 



Mathematical Sciences International Research Journal  Vol 4 Spl Issue   ISSN  2278 – 8697 

 

ISBN 978-93-84124-40-3                                                                                                                37 

 

 
Figure 6. The velocity profile for v against D-1 with 1,2,01.0 === mME  

 
Figure 7. The velocity profile for u against m with 1000,2,01.0 1 === -DME  

 
Figure 8. The velocity profile for v against m with 1000,2,01.0 1 === -DME  
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 I II III IV V VI VII VIII IX 

-0.15

-0.1

-0.05

0

0.2 0.7

v

 

z 

D‾¹=1000 

D‾¹=2000 

D‾¹=3000 

D‾¹=4000 

0

0.5

1

1.5

0.2 0.7

u

 

z 

m=1

m=2

m=3

m=4

-0.2

-0.15

-0.1

-0.05

0

0.2 0.7

v

 

z 

m=1

m=2

m=3

m=4



Mathematical Sciences International Research Journal  Vol 4 Spl Issue   ISSN  2278 – 8697 

 

IMRF Journals  38 

 

E 0.01 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.01 

M 2 2 2 5 8 2 2 2 2 

D
-1
 1000 1000 1000 1000 1000 2000 3000 1000 1000 

m 1 1 1 1 1 1 1 2 3 

Table 1. The slip velocity u B  

 
h I II III IV V VI VII VIII IX 

0.2 -0.084 -0.0912 -0.1065 -0.0811 -0.074 -0.072 -0.065 -0.1022 -0.1062 

0.5 -0.1156 -0.1339 -0.1652 -0.1109 -0.1028 -0.1058 -0.1025 -0.1339 -0.1652 

 
 I II III IV V VI VII VIII IX 

E 0.01 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.01 

M 2 2 2 5 8 2 2 2 2 

D
-1
 1000 1000 1000 1000 1000 2000 3000 1000 1000 

m 1 1 1 1 1 1 1 2 3 

Table 2. The slip velocity v B  
h I II III IV V VI VII VIII IX 

0.2 2.49444 1.49775 0.77973 3.96435 4.38864 3.54346 5.71434 1.25563 1.02256 

0.5 2.49512 1.58992 0.79145 3.45126 4.12855 3.57835 5.82945 1.28596 1.05266 

 
 I II III IV V VI VII VIII IX 

E 0.01 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.01 

M 2 2 2 5 8 2 2 2 2 

D
-1
 1000 1000 1000 1000 1000 2000 3000 1000 1000 

m 1 1 1 1 1 1 1 2 3 

Table 3. The shear stress )( xt on the upper plate. 

h I II III IV V VI VII VIII IX 

0.2 -
0.5224 

-
0.4209 

-
0.3665 

-
0.6985 

-
0.7854 

-
0.8544 

-
1.2232 

-
0.3556 

-
0.1445 

0.5 -
0.6878 

-
0.5988 

-
0.4874 

-
0.7488 

-
0.8556 

-
9.2565 

-
2.0013 

-
0.4745 

-
0.3568 

 
 I II III IV V VI VII VIII IX 

E 0.01 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.01 

M 2 2 2 5 8 2 2 2 2 

D
-1
 1000 1000 1000 1000 1000 2000 3000 1000 1000 

m 1 1 1 1 1 1 1 2 3 

Table 4. The shear stress )( yt on the upper plate. 
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Conclusions:  

1. The slip velocity q B   has been calculated using B-J condition. The slip 

velocity uB enhances with its magnitude with increasing in E, M and D-1 for 
the smaller and larger thickness of porous bed. The slip velocity vB enhances 
with its magnitude increase in E or m while reduces with increases in M (or) 
D-1 for the irrespective thickness of porous bed. 

2. The magnitude of the velocity component u enhances with E or m and 
reduces with M or D-1 in either case of smaller and larger thickness of porous 
bed.  

3. The magnitude of the velocity component v enhances with E but reduces 
with M, m and   D-1 in either cases of smaller and larger thickness of porous 
bed.  

4. The resultant velocity however enhances with E and m and reduces with M 
and D-1 irrespective of the thickness of the porous bed and is always directed 
away from the central axis of the channel with phase difference greater than 

4/7p  from the direction of the imposed pressure gradient.  
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