BAIRE SPACE VIA WEAK FORM OF OPEN SETS IN BITOPOLOGY

M.LELLIS THIVAGAR, V.RAMESH, M.AROCKIA DASAN, M.DAVAMANI CHRISTOBER

Abstract: This paper is to introduce the notions such as $(1,2)^*\alpha_{\psi}$ -nowhere dense sets, $(1,2)^*\alpha_{\psi}$ -dense sets etc. Also we introduce and discuss some of the properties of the $(1,2)^*\alpha_{\psi}$ -Baire space in Bitopological spaces by using $(1,2)^*\alpha_{\psi}$ -open sets.

Keywords: Bitopological spaces, $(1,2)^*\alpha_{\psi}$ -open sets, $(1,2)^*\alpha_{\psi}$ -nowhere dense sets, $(1,2)^*\alpha_{\psi}$ -dense sets, $(1,2)^*\alpha_{\psi}$ -first and second category.

MSC 2010: 54A05, 54A52, 54D10

Introduction: In 1963, Kelly [4] initiated the study of the bitopological space which is to be a set X equipped with two topologies τ_1 and τ_2 on X. In this space, the Baire space concept was developed by Fukutake [1] in 1992. In bitopological spaces, Lellis Thivagar et al. [7] introduced $(1,2)^*\alpha$ -open sets by defining a new class of open sets namely $\tau_{1,2}$ -open sets and in it we can observe that the family of $(1,2)^*\alpha$ -open sets is need not form a topology but an m-structure. This paper is to introduce the $(1,2)^*\alpha_{\psi}$ -open sets and for that we introduce $(1,2)^*\alpha_{\psi}$ -nowhere dense sets, $(1,2)^*\alpha_{\psi}$ -dense sets etc.

Preliminaries: In this section we recollect some properties of basic concepts which are useful in the sequel. In this paper, by (X, τ_1, τ_2) (or X) we always mean bitopological spaces on which no separation axioms are assumed, unless otherwise mentioned.

Definition 2.1. [4] A non-empty set X together with two arbitrary topologies τ_1 and τ_2 is called a bitopological space and is denoted by (X, τ_1, τ_2) .

Definition 2.2. [5] A subset S of a bitopological space (X, τ_1, τ_2) is called $\tau_{1,2}$ -open if and only if S=AUB, where A is τ_1 -open and B is τ_2 -open.The complement of $\tau_{1,2}$ -open sets are called $\tau_{1,2}$ -closed sets. The family of all $\tau_{1,2}$ -open sets is denoted by $\tau_{1,2}O(X)$. Note that $\tau_{1,2}$ O(X) need not necessarily form a topology and $\tau_1O(X)$, $\tau_2O(X) \subseteq \tau_{1,2}O(X)$.

Remark 2.3. [5] Let A be a subset of a bitopological space (X, τ_1, τ_2) . Then

- 1. $\tau_{1,2}$ -int(A) = \cup {G: G \subseteq A and G is $\tau_{1,2}$ -open}
- 2. $\tau_{1,2}$ -cl(A) = \cap {F: A \subseteq F and F is $\tau_{1,2}$ -closed}.

Definition 2.4. A subset A of a bitopological space (X, τ_1, τ_2) is called $(1,2)^*\alpha$ -open [5] if $A \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A))) and the complement of $(1,2)^*\alpha$ -open sets are called $(1,2)^*\alpha$ -closed sets. The family of all $(1,2)^*\alpha$ -open sets need not form a topology and is denoted by $(1,2)^*\alpha O(X)$.

Baire Space with Bitopological Open Sets: In this section we generate a topology by $(1, 2)^*\alpha$ -open sets as its sub basis and in this topology we introduce and

establish the properties of $(1,2)^*\alpha_{\psi}$ -nowhere dense sets and $(1,2)^*\alpha_{\psi}$ -Baire spaces.

Definition 3.1. A topology which is generated by the family $(1,2)^*\alpha O(X)$ as its sub basis and the collection of elements of this topology is denoted by $(1,2)^*\alpha_\psi O(X)$. A subset A of X is called $(1,2)^*\alpha_\psi$ -open if $A\in (1,2)^*\alpha_\psi O(X)$. From this it is very clear that every $(1,2)^*\alpha$ -open set is $(1,2)^*\alpha_\psi$ -open but not converse and the complement of a $(1,2)^*\alpha_\psi$ -open set is $(1,2)^*\alpha_\psi$ -closed set. The collection of all $(1,2)^*\alpha_\psi$ -closed sets is denoted by $(1,2)^*\alpha_\psi C(X)$.

Remark 3.2. Let A be a subset of a bitopological space X. Then $(1,2)^*\alpha_{\psi}$ -interior and $(1,2)^*\alpha_{\psi}$ -closure of A are defined as follows:

- 1. $(1,2)^*\alpha_{\psi}$ -int(A) = \cup {G: G \subseteq A and G is $(1,2)^*\alpha_{\psi}$ -open}
- 2. $(1,2)^*\alpha_{\psi}$ -cl(A) = \cap {F: A \subseteq F and F is $(1,2)^*\alpha_{\psi}$ -closed}. **Example 3.3.** Let X = {a, b, c}, τ_1 = { φ , X, {a, b}}, τ_2 = { φ , X, {b, c}}. Then $\tau_{1,2}O(X)$ = { φ , X, {a, b}, {b, c}} = $(1,2)^*\alpha_{\psi}O(X)$. Therefore, $(1,2)^*\alpha_{\psi}O(X)$ = { φ , X, {b}, {a, b}, {b, c}}.

Remark 3.4. We can easily prove that

- 1. a set A is $(1,2)^*\alpha_{\psi}$ -closed set if $(1,2)^*\alpha_{\psi}$ -cl(A) =A
- 2. a set A is $(1,2)^*\alpha_{\psi}$ -open set if $(1,2)^*\alpha_{\psi}$ -int(A) =A
- 3. $(1,2)^*\alpha_{\psi}$ -int(A) $\supseteq (1,2)^*\alpha$ -int(A)
- 4. $(1,2)^*\alpha_{\psi}$ -cl(A) $\subseteq (1,2)^*\alpha$ -cl(A).

Definition 3.5. A subset A of a bitopological space X is called

- 1. $(1,2)^*\alpha_{\psi}$ -dense if $(1,2)^*\alpha_{\psi}$ -cl(A) = X
- 2. $(1,2)^*\alpha_{\psi}$ -nowhere dense if $(1,2)^*\alpha_{\psi}$ int $((1,2)^*\alpha_{\psi}$ cl(A)) = φ .

Example 3.6. Let $X = \{a, b, c\}$, $\tau_1 = \{\varphi, X, \{a, b\}\}$, $\tau_2 = \{\varphi, X, \{b, c\}\}$. Then $\tau_{1,2}O(X) = \{\varphi, X, \{a, b\}, \{b, c\}\} = (1,2)^*\alpha O(X)$. Therefore, $(1,2)^*\alpha_{\psi}O(X) = \{\varphi, X, \{b\}, \{a, b\}, \{b, c\}\}$, here $\{b\}$ is $(1,2)^*\alpha_{\psi}$ -dense and $\{a\}$ is $(1,2)^*\alpha_{\psi}$ -nowhere dense.

Theorem 3.7. A subset A of X is $(1,2)^*\alpha_{\psi}$ -nowhere dense if and only if $X-(1,2)^*\alpha_{\psi}$ -cl(A) is $(1,2)^*\alpha_{\psi}$ -dense in X.

Proof: Suppose $X-(1,2)^*\alpha_{\psi}$ -cl(A) is not $(1,2)^*\alpha_{\psi}$ -dense in X, there exists $p \in X$ and a $(1,2)^*\alpha_{\psi}$ -open set G such that $p \in G$ and $G \cap (X-(1,2)^*\alpha_{\psi}$ -cl(A)) = φ . Then $p \in G$

ISBN 978-93-84124-61-8 **77**

 $\begin{array}{l} \subset (1,2)^*\alpha_{\psi}\text{-cl}(A) \text{ and so } p \in (1,2)^*\alpha_{\psi}\text{-int}((1,2)^*\alpha_{\psi}\text{-cl}(A)). \\ \text{This is not possible, because A is } (1,2)^*\alpha_{\psi}\text{-nowhere dense in X. Therefore, } X - (1,2)^*\alpha_{\psi}\text{-cl}(A) \text{ is } (1,2)^*\alpha_{\psi}\text{-dense in X. Conversely, assume } X - (1,2)^*\alpha_{\psi}\text{-cl}(A) \text{ is } (1,2)^*\alpha_{\psi}\text{-dense in X. Then } (1,2)^*\alpha_{\psi}\text{-cl}(X-(1,2)^*\alpha_{\psi}\text{-cl}(A)) \\ = X \text{ and so } (1,2)^*\alpha_{\psi}\text{-int}((1,2)^*\alpha_{\psi}\text{-cl}(A)) = \varphi. \end{array}$

Theorem 3.8. The union of a finite number of $(1,2)^*\alpha_{\psi}$ -nowhere dense sets is $(1,2)^*\alpha_{\psi}$ -nowhere dense.

Proof: It is enough to show that the union of two $(1,2)^*\alpha_\psi$ -nowhere dense sets A and B is $(1,2)^*\alpha_\psi$ -nowhere dense. Without loss of generality, we may assume that A and B are $(1,2)^*\alpha_\psi$ -closed. The Theorem is then equivalently to saying that the intersection of two $(1,2)^*\alpha_\psi$ -dense open sets A^c and B^c is $(1,2)^*\alpha_\psi$ -dense. Now if U is a non-empty $(1,2)^*\alpha_\psi$ -open set, then U \cap A^c is non-empty $(1,2)^*\alpha_\psi$ -open. Hence $(U \cap A^c) \cap B^c = U \cap (A^c \cap B^c)$ is non-empty $(1,2)^*\alpha_\psi$ -open.

Theorem 3.9. If $A \subseteq B \subseteq X$ and B is $(1,2)^*\alpha_{\psi}$ -nowhere dense in X, A is $(1,2)^*\alpha_{\psi}$ -nowhere dense in X.

Proof: Proof is trivially from the fact that if $A \subseteq B \subseteq X$, then $(1,2)^*\alpha_{\psi}\text{-cl}(A) \subseteq (1,2)^*\alpha_{\psi}\text{-cl}(B)$ and $(1,2)^*\alpha_{\psi}\text{-int}(A) \subseteq (1,2)^*\alpha_{\psi}\text{-int}(B)$.

Definition 3.10. A bitopological space X is said to be $(1,2)^*\alpha_{\psi}$ -Baire space if for any countable collection $\{A_n\}$ of $(1,2)^*\alpha_{\psi}$ -closed subsets of X such that $(1,2)^*\alpha_{\psi}$ -int $(A_n) = \phi \ \forall n$, then $(1,2)^*\alpha_{\psi}$ -int $(U_n \ A_n) = \phi$.

Example 3.11. Let $X = \{a, b, c, d\}$, $\tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$, $\tau_2 = \{\phi, X, \{c\}, \{d\}, \{c, d\}\}$. Then $\tau_{1,2}O(X) = P(X) = (1,2)*\alpha O(X) = (1,2)*\alpha_{\psi}O(X)$. Here X is $(1,2)*\alpha_{\psi}$ -Baire space.

Theorem 3.12. A bitopological space X is $(1,2)^*\alpha_{\psi}$ -Baire space if and only if for any countable collection $\{A_n\}$ of $(1,2)^*\alpha_{\psi}$ -open subsets of X such that $(1,2)^*\alpha_{\psi}$ -cl $(A_n) = X \ \forall n$, then $(1,2)^*\alpha_{\psi}$ -cl $(\cap_n A_n) = X$.

Proof: Assume X is $(1,2)^*\alpha_{\psi}$ -Baire space and $\{A_n\}$ is a countable collection of $(1,2)^*\alpha_{\psi}$ -open subsets of X such that $(1,2)^*\alpha_{\psi}$ -cl $(A_n) = X \ \forall n$. Then $(1,2)^*\alpha_{\psi}$ -int $(X-A_n) = \varphi \ \forall n$ and implies $(1,2)^*\alpha_{\psi}$ -int $(U_n(X-A_n)) = \varphi$. Thus $(1,2)^*\alpha_{\psi}$ -cl $(\cap_n \ A_n) = X$. Conversely, assume $\{A_n\}$ is a countable collection of $(1,2)^*\alpha_{\psi}$ -closed subsets of X such that $(1,2)^*\alpha_{\psi}$ -int $(A_n) = \varphi \ \forall n$. Then $(1,2)^*\alpha_{\psi}$ -cl $(X-A_n) = X \ \forall n$ and by hypothesis, $(1,2)^*\alpha_{\psi}$ -cl $(\cap_n (X-A_n)) = X$ and implies $(1,2)^*\alpha_{\psi}$ -int $(U_n \ A_n) = \varphi$.

Definition 3.13. A subset A of a bitopological space X is said to be $(1,2)^*\alpha_{\psi}$ -first category if $A=\cup_n A_n$, where each A_n is $(1,2)^*\alpha_{\psi}$ -nowhere dense subset of X. If A is not $(1,2)^*\alpha_{\psi}$ -first category, then A is said to be $(1,2)^*\alpha_{\psi}$ -second category.

Example 3.14. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a, b\}\}, \tau_2 = \{\phi, X, \{b, c\}\}.$ Then $\tau_{1,2}O(X) = \{\phi, X, \{a, b\}, \{b, c\}\} = (1,2)^*\alpha O(X).$ Therefore, $(1,2)^*\alpha_{\psi}O(X) = \{\phi, X, \{b\}, \{a, b\}, \{b, c\}\}.$ Clearly, $\{a, c\} = \{a\} \cup \{c\}$ is $(1,2)^*\alpha_{\psi}$ -first category and $\{b, c\}$ is $(1,2)^*\alpha_{\psi}$ -second category.

Theorem 3.15. If $A \subseteq B \subseteq X$ and B is $(1,2)^*\alpha_{\psi}$ -first category in X, A is $(1,2)^*\alpha_{\psi}$ -first category in X. Proof: Proof is trivial.

Theorem 3.16. Any $(1,2)^*\alpha_{\psi}$ -closed set A such that $(1,2)^*\alpha_{\psi}$ -int(A) = φ is $(1,2)^*\alpha_{\psi}$ -first category.

Proof: If A is then $(1,2)^*\alpha_{\psi}$ -closed, A=A $\cup \varphi \cup \varphi \cup ...$ is a union of a countable collection of $(1,2)^*\alpha_{\psi}$ -nowhere dense sets.

Proposition 3.17. If A is a first category subset of a $(1,2)^*\alpha_{\downarrow J}$ -Baire space X, then $(1,2)^*\alpha_{\downarrow J}$ -int(A) = φ .

Proof: Since A is first category, $A=\cup_n A_n$, where each A_n is $(1,2)^*\alpha_{\psi}$ -nowhere dense subset of X. Let G be a $(1,2)^*\alpha_{\psi}$ -open set such that $G\subseteq A$. Then $G\subseteq \cup_n A_n\subseteq \cup_n (1,2)^*\alpha_{\psi}$ -cl (A_n) and so $X-G\supseteq \cap_n (X-(1,2)^*\alpha_{\psi}$ -cl (A_n)). Since each $X-(1,2)^*\alpha_{\psi}$ -cl (A_n) is $(1,2)^*\alpha_{\psi}$ -open and $(1,2)^*\alpha_{\psi}$ -dense in $(1,2)^*\alpha_{\psi}$ -Baire Space X, $\cap_n (X-(1,2)^*\alpha_{\psi}$ -cl (A_n)) is $(1,2)^*\alpha_{\psi}$ -dense in X and X-G is $(1,2)^*\alpha_{\psi}$ -dense in X. So X-G = X and hence $G=\varphi$.

Proposition 3.18. Any $(1,2)^*\alpha_{\psi}$ -open subspace Y of a $(1,2)^*\alpha_{\psi}$ -Baire space X is itself a $(1,2)^*\alpha_{\psi}$ -Baire Space. Proof: Let $\{A_n\}_{n=1}^{\infty}$ be a countable collection of $(1,2)^*\alpha_{\psi}$ -closed sets of Y such that each set $(1,2)^*\alpha_{\psi}$ $int_Y(A_n) = \phi$ (here interior in Y). We show that $(1,2)^*\alpha_{\psi}$ -int_Y $(\cup_n A_n) = \phi$. Let $(1,2)^*\alpha_{\psi}$ -cl (A_n) be $(1,2)^*\alpha_{\psi}$ -closure of A_n in X, then where each $(1,2)^*\alpha_{\psi}$ $cl(A_n) \cap Y = A_n$ and the set $(1,2)^* \alpha_{\psi} - int((1,2)^* \alpha_{\psi} - cl(A_n)) =$ φ. For if U is a non-empty $(1,2)^*\alpha_{\psi}$ -open set of X contained in $(1,2)^*\alpha_{\psi}$ -cl(A_n), then U must intersect A_n. Then $U \cap Y$ is a non-empty $(1,2)^*\alpha_{\psi}$ -open set of Y contained in A_n, contrary to hypothesis. If the union of the sets A_n contains the non-empty $(1,2)^*\alpha_{\psi}$ -open set W of Y, then the union of the sets $(1,2)^*\alpha_{\psi}$ -cl (A_n) also contains the set W, which is $(1,2)^*\alpha_{\psi}$ -open in X because Y is $(1,2)^*\alpha_{\psi}$ -open in X. But each set $(1,2)^*\alpha_{\psi}$ $int((1,2)^*\alpha_{\psi}-cl(A_n)) = \phi$, contradicting the fact that X is $(1,2)^*\alpha_{\psi}$ -Baire space.

Conclusion: In this paper, we have discussed some more properties of $(1,2)^*\alpha_{\psi}$ -nowhere dense sets and $(1,2)^*\alpha_{\psi}$ -locally compact sets. Finally we derived the properties of $(1,2)^*\alpha_{\psi}$ -Baire space. In future, we can establish many research fields such as soft topology, fuzzy topology, digital topology via Baire Spaces.

IMRF Journals 78

References:

- Elizabeth.S, Priyanka Victor, Jothilakshmi.R, Impact of Monotonic Plant Growth Functions; Mathematical Sciences international Research Journal ISSN 2278 - 8697 Vol 3 Issue 2 (2014), Pg 631-635
- 2. Fukutake.J.: On (τ_i, τ_j) -Baire spaces, Bull. of Fukoaka University of Education, 41, III (1992), 35-40.
- 3. Multiobjective Non Linear Programming Problem Sujeet Kumar Singh, Shiv Prasad Yadav, ; Mathematical Sciences International Research Journal ISSN 2278 8697 Vol 3 Issue 1 (2014), Pg 147-150
- A. Dhanalakshmi, K. Srinivasa Rao, K. Sivakumar, Estimation of Molecular Descriptors of the Fullerene; Mathematical Sciences international Research Journal ISSN 2278 – 8697 Vol 3 Issue 2 (2014), Pg 624-627
- 5. Glen E. Bredon.: Topology and Geometry, Springer-Verlag, New York (1993).
- S. S. Handibag, B.D. Karande, Solution of Partial Differential Equations involving; Mathematical Sciences International Research Journal ISSN 2278 - 8697 Vol 3 Issue 1 (2014), Pg 142-146
- 7. Haworth.R.C, Mccoy.R.A.: Baire Spaces, Dissertations Mathematica CXLI, Warszawa, (1977).
- 8. Karuna, on Fuzzy Linear Spaces Over Valued Fields; Mathematical Sciences International Research Journal ISSN 2278 - 8697 Vol 3 Issue 1 (2014), Pg 126-128

- 9. Kelly.J.C.: Bitopological spaces, Proc. Londan Math. Soc 13,(3),(1963) 71-89.
- 10. M. Jeyaraman, J. Rajalakshmi, R. Muthuraj, on Weakly G'''-Closed Sets in Fuzzy topology; Mathematical Sciences international Research Journal ISSN 2278 - 8697 Vol 3 Issue 2 (2014), Pg 628-630
- 11. Lellis Thivagar.M and Ravi.O.: A bitopological(1,2)*-semi generalized continuous mappings, Bull of Malaysian. Math. Soc., 29(1)(2005).
- Satish.C.Pandey, Dr.A.K.Sharma, K.S.Pandey, Data Mining Application for Counter Terrorism; Mathematical Sciences international Research Journal ISSN 2278 - 8697 Vol 4 Issue 1 (2015), Pg 20-23
- 13. Patty. C.W.: Foundations of Topology, PWS-KENT Publication Company, Boston, (1992).
- 14. Elizabeth.S, Preethi Victor, Jothilakshmi.R, Global Attractivity of $A(K+1)^{Th}$ Order Nonlinear; Mathematical Sciences international Research Journal ISSN 2278 8697 Vol 3 Issue 2 (2014), Pg 651-654
- 15. Saeid Jafari, Lellis Thivagar.M, Athisayaponmani. S.: (1,2) α-open sets based on bitopological separation axioms, Soochow journal of Math, 33,(3).(2007), 375-381.
- 16. C.K. Sivashankari, Production inventory Model for Non-Deteriorative Items With Quadratic Demand; Mathematical Sciences international Research Journal: ISSN 2278-8697 Volume 4 Issue 2 (2015), Pg 126-130

79

M. Lellis Thivagar/ V. Ramesh/ M. Arockia Dasan/ School of Mathematics/ Madurai Kamaraj University/ Madurai/ 625 021/ Tamil Nadu/ India/ M.Davamani Christober/ Department of Mathematics/ The American College/ Madurai/ 625 002/ Tamil Nadu/ India/

ISBN 978-93-84124-61-8