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Abstract: This paper serves as a platform to discuss and bring out the basic properties of newly defined Ωgb

+ 
and Ʊgb

+ -sets, under the light of simple extension topological spaces. 

 
Introduction: A new class of generalized open sets 
called b-open sets in topological spaces was defined 
by Andrijevic [2]. The class of all b open sets 
generates the same topology as the class of all pre-
open sets. In 1986, Maki [9] introduced the concept of 

generalized L sets and defined the associated closure 
operators by using the work of Levine [7] and 
Dunhem [4]. Caldas and Dontchev [3] introduced Ʌs-
sets, Vs-sets, gɅs-sets and gVs-sets. Ganster and et al. 
[5] introduced the notion of pre Ʌ-sets and pre V-sets 
and obtained new topologies via these sets. M.E. Abd 
El-Monsef et al. [1] defined bɅ-sets and bV-sets on a 
topological space and proved that it forms a topology. 
In 1963 Levine [8] introduced the concept of a simple 

extension topologyt as )(Bt ={(BÇ O)È O
'
/O,O

tÎ
'

and B tÏ }. Sr. I. Arockiarani and F. Nirmala 

Irudayam [10] introduced the concept of b+-open sets 
in extended topological spaces. S. Reena and F. 
Nirmala Irudayam [12] devised a new form of 
continuity and T. Noiri, Sr. I. Arockiarani and F. 
Nirmala Irudayam [11] coined the idea of Ωgb

+*, Ʊgb
+* 

sets in simple extended topological spaces.                          

Preliminaries: All through the paper the space X is a 
SEITS in which no separation axioms are assumed 
unless and otherwise stated.                                                                                                                     
Definition 2.1: A subset A of a topological space (X,
t ) is said to be,                                                      (i)  b-
open set[2], if AÍ cl(int(A))È int(cl(A)) and b-

closed set cl(int(A))È int(cl(A))ÍA.                          

(ii) a generalized closed (briefly g-closed) [6] if 
cl(A) U whenever A U and U is open.       

Definition 2.2[13]:A subset A of (X, τ) is called gbp -

closed if UAbcl Ì)(  whenever  UAÌ and U  is p -

open in ),( tX . By ),( tp XGBO  we mean the family 

of all gbp - closed subsets of the space ),( tX .                                                                                                                      

Definition 2.2[10]: A subset A of a topological space 

(X,
+

t ) is said to be,     (i)  a b
+

-open set  

If AÍ cl
+

(int(A))È  int(cl
+

(A)).                                                                            

(ii) a generalized b
+

-closed (briefly gb
+

-closed) if b
+

cl(A)ÍU whenever AÍU and U is open.                   

Definition 2.3[12]: A subset A of (X, τ
+

) is called 
+gbp -closed if UAclb Ì

+ )(  whenever UAÌ and 

U  is 
+

p -open in ),( +
tX . By ),( ++

tp XGBO  we 

mean the family of all 
+gbp closed subsets of the 

space ).,( +
tX     

Definition 2.3[11]: Let ),,( IX +
t  be a simple 

extension ideal topological space (SEITS) and a 
subset of X. We defined Ωgb

+* (A) and Ʊgb
+* (A) as 

follows, Ωgb
+*(A)  

)},,(,:{ IXOBIGGAG ++
ÎÍÇ= t  

Ʊgb
+*(A) )}.,,(,:{ IXCBIFAFF ++

ÎÍÈ= t  

Ωgb
+-sets and Ʊgb

+  -sets                                                                                                  
Definition 3.1: Let S be a subset of a topological 

space (X, τ
+

) we define the sets Ωgb
+ (S) and Ʊgb

+(S) 
as follows,   

Ωgb
+(S) }),(|{ GSandXOGBGG ÍÎÇ=

++
tp                                                      

Ʊgb
+(S) }),(|{ FSandXCGBFF ÊÎÈ=

++
tp                         

Lemma 3.2: For subsets QS ,  and IiSi Î,  of a 

topological space ),( +
tX  the following properties 

hold   

(1) ÍS Ωgb
+(S)                               

(2) Q ÞÍ S Ωgb
+
(Q)Í  Ωgb

+
(S) 

  
 (3) Ωgb

+
 (Ωgb

+
 (S)) 

= Ωgb
+ (S)  (4) ),,( ++

Î tp XOGBSIf then S= Ωgb
+ 

(S) (5) Ωgb
+ (È {Si:iÎ I}) = È { Ωgb

+ (Si):iÎ I}             
(6) Ωgb

+ (Ç {Si:iÎ I}) ÇÍ { Ωgb
+ (Si):iÎ I})

    
(7) 

Ωgb
+(Sc) =

 
(Ʊgb

+(S))c      (8) Ωgb
+(X-S)=X-

 
Ʊgb

+(S)   

Proof: (1) Let xÏΩgb
+(S),then there exists a 

+gbp -

open set G such that GS Í  and x .GÏ              

Hence x SÏ and so ÍS  Ωgb
+(S)   

(2) Let xÏΩgb
+(S),then there exists a 

+gbp -open set 

G such that GS Í  and x .GÏ                                        

By our assumption SQ Í .   Hence GQ Í  and 

hence xÏΩgb
+(Q) 

Hence SQ Í    Ωgb
+ (Q)Í  Ωgb

+ (S).     

(3) From (1) and (2) using (1),
 

ÍS Ωgb
+(S)                        

Þ  Ωgb
+(S)Í

 
Ωgb

+
(Ωgb

+
(S))……….(1)                                  

If x ÏΩgb
+(S), then there exists a

+gbp -open set G 

such that S   G and x Ï G from the definition of 

Ωgb
+
(S), Ωgb

+(S) GÍ  and              hence xÏ

Ωgb
+
(Ωgb

+(S))  
Therefore Ωgb

+ (Ωgb
+ (S)) Í  Ωgb

+ (S)…………(2) From 

(1) and (2) we get.     Ωgb
+ (Ωgb

+ (S)) = Ωgb
+ (S) 



Mathematical Sciences International Research Journal  : Volume 5 Issue  2 (2016)                         ISSN 2278-8697 

 

 

IMRF Journals

 

(4) From definition if ÎS πGB
+

O(X, τ
+

), then ÎS
Ωgb

+(S)  SÎS. 
Therefore Ωgb

+(S)Í S ……..(i).  

From (1)  ÍS Ωgb
+
(S) ……. (ii). 

Hence from (i) and (ii), S= Ωgb
+ (S) 

(5) Let }:{ IiSS i ÎÈ= .                                              

By (2) we have, È {Ωgb
+(Si):iÎ I}ÍΩgb

+(S). 

If x ÏÈ {Ωgb
+(Si):iÎ I},then, for each i I, 

there exists G i  πGB
+

O(X, τ
+

), such that 

ii GS Í  and x iGÏ .  If }:{ IiGG i ÎÈ=  then G  

πGB
+

O(X, τ
+

) with S G and xÏG. 

Hence xÏΩgb
+(S) and hence (5) holds.  

(6) Follows from definition (3.1)  

(7) Let xÎ  Ωgb
+(Sc).Then for every 

+gbp -open set G 

containing 
cS , x GÎ . 

Hence x
cGÏ for every 

+gbp -closed set .SG c
Í  

Hence xÏƱgb
+(S) 

Hence xÎ ( Ʊgb
+ (Sc)) 

Therefore Ωgb
+ (Sc) Í (Ʊgb

+(S))c
……..…..(1). 

Let x Î(Ʊgb
+(S))cÞxÏƱgb

+ )(S . 

Then for every
+gbp -closed set SG c

Í ,         x cGÏ  

x GÎ  for every
+gbp -open set G containing

cS . 

GS c Í .  

Hence xÎΩgb
+  (Sc).  

Therefore Ωgb
+ (Sc) Ê (Ʊgb

+(S))c …..(2). 

From (1) and (2), Ωgb
+(Sc) = (Ʊgb

+(S))c   
(8) Follows from definition (3.1) 

Lemma 3.3: For subsets QS ,  and IiSi Î,  of a 

topological space ),( +
tX  the following properties 

hold   

1. Ʊgb
+ )(S SÍ   

2. ÞÍ SQ Ʊgb
+ )(Q ÍƱgb

+ )(S   

3. Ʊgb
+(Ʊgb

+(S)) = Ʊgb
+ )(S  

),,( ++
Î tp XCGBSIf then S= Ʊgb

+ )(S       

4. Ʊgb
+

{}):{( Ç=ÎÇ IiS i Ʊgb
+ }:)( IiSi Î           

{È
 
Ʊgb

+(Si) ÍÎ }): Ii Ʊgb
+

}):){(( IiSi ÎÈ
                                                                                                                     

 

Definition 3.4:  A subset S of a space (X, τ
+

) is called 

a   (1)  gb
+

- Ω-set briefly Ωgb
+ -set if S= Ωgb

+ (S) (2) gb
+

- Ʊ-set  briefly Ʊgb
+-set if  S= Ʊgb

+ (S) The set of all 
Ωgb

+-sets (respectively Ʊgb
+-sets) is denoted by Ωgb

+

),( +
tX (resp.Ʊgb

+ ),( +
tX ).                                                                                                                               

Remark 3.5: Clearly Ω- sets are gb
+

- Ω sets and Ʊ-

sets are gb
+

-Ʊ-sets. Observe that a subset S is a gb
+

-

Ω- set if Sc is a gb
+

 -Ʊ-set. Also every gb
+

-Ω-set is a 

πgb
+

-open set.     

Theorem 3.6:  For a space (X, τ
+

), the following 
statements hold    (1)  ɸ and X are Ωgb

+-sets and Ʊgb
+-

sets                                                                                         
(2)  Every union of  Ʊgb

+-sets(resp. Ωgb
+-sets) is a  

Ʊgb
+-set(resp. Ωgb

+-sets)                                  (3)  Every 
intersection of Ωgb

+ -sets (resp. Ʊgb
+ sets) is a Ωgb

+ -
set(resp. Ʊgb

+ sets)                             
Proof:(1) It is obvious.  

(2) Let }|{ IiSi Î be a family of Ʊgb
+-sets in (X, τ

+
). 

Then S i =Ʊgb
+(Si) for each i I.  

Let S=È
ÎIi

Si. Then 

Ʊgb
+ =)(S Ʊgb

+

ÈÈ
ÎÎ

Ê
Ii

i
Ii

S )( Ʊgb
+(Si) SSi

Ii

==È
Î

Also 

Ʊgb
+ .)( SS Í

 
Hence S is a Ʊgb

+-set.                                  
(3) By using 

 Ωgb
+(Ç

ÎIi
Si )Í

 Ç
ÎIi

 Ωgb
+(Si) Í

 Ç
ÎIi

Si=S.  

Also ÍS Ωgb
+(S). 

Hence S is a Ωgb
+-set.                                                     

Definition3.7: Let (X, τ
+

) be a topological space 

then the πgb
+

-closure of A denoted by                  πgb
+

cl (A) is defined by  

πgb
+

-cl(A) = ∩{ F|F πGB
+

C (X, τ
+

) &F  A}                  

Lemma 3.8: Let (X, τ
+

) be a topological space and x 

 X .Then yÎ  Ωgb
+ ({x}) iff                        x  πgb

+
-cl 

({y}).                                                                                                                     

Proof: Suppose yÎ  Ωgb
+
({x}).Then for every πgb

+
-

open set G {x}, y  G.                                   If xÏ πgb
+

-cl ({y}),  

then $  H  πGB
+

C(X, τ
+

) ' {y}  H and  

xÏ H. This implies x  X-H,  

X-H  πGB
+

O (X,τ
+

) and yÏX-H.  

Take X-H =G. Then G  πGB
+

O (X, τ
+

),  

{x}  G and yÏG which is a  contradiction. Hence x  

πgb
+

cl({y}).  

Conversely, suppose x  πgb
+

-cl({y}) then for every 

πgb
+

-closed set G  {y}, x  G.  

If yÏ Ωgb
+({x}) then there exists H  πGB

+
O (X, τ

+
) 

such that {x} H and y  H. 
Take X-H =G.  

Then G πGB
+

C (X, τ
+

 ), y  G and xÏ G. 

So $  a πgb
+

-closed set G {y} ' x ÏG.  
By this contradiction, we get yÎΩgb

+({x}).                                                                                                                       
Theorem 3.9: The following statements are 
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equivalent for any points x and y in a topological 

space (X, τ
+

).  
(1) Ωgb

+
({x})  ≠ Ωgb

+ ({y})                

 (2) πgb
+

-cl ({x}) ≠ πgb
+

-cl({y})                         
Proof: (1)   (2)  
Suppose Ωgb

+
({x}) ≠  Ωgb

+({y}). 

Then$  zÎX ' zÎ ({x}) and zÎΩgb
+({y}) . Therefore x

Îπgb
+-cl ({z}) and yÎπgb

+-cl({z}. Hence {x}∩ πgb
+-cl 

({z})≠ ɸ and                 {y}∩πgb
+-cl({z}) ≠ɸ.  

Since xÎπgb
+-cl({z}), πgb

+-cl{x}  πgb
+-cl({z}) and 

hence {y} ∩ πgb
+-cl ({x}) ≠ ɸ. 

Thus  πgb
+-cl ({x}) ≠  πgb

+- cl({y}).                                                  

(2)   (1).Suppose Ωgb
+({x}) ≠ Ωgb

+({y}),then  $  zÎ
πgb+-cl ({x}) and zÎπgb+cl({y}). Therefore xÎ

Ωgb
+({x}) and y ÏΩgb

+({z}) . 

So $  a πgb
+

-open set G {z} such that xÎG and yÏ
G.Hence y Ï Ωgb

+({x}) .  

Hence Ωgb
+({x})  ≠ Ωgb

+({y}).  Lemma 3.10: Let (X,τ
+

) 

be a topological space and A Î  πGB
+

O(X,τ
+

).    

Then Ωgb
+(A)={xÎX | πgb

+
-cl({x})∩A≠ ɸ}.                                                                                   

Proof: Let xÎπGB
+

O(X,τ
+

), A= Ωgb
+(A). 

Also xÎπgb
+

-cl({x}).  

Hence πgb
+

-cl{x}∩A≠ɸ. Conversely,  

let xÎX such that πgb
+

-cl({x})∩A≠ ɸ. 

If x Ï Ωgb
+(A),then$  VÎπGB

+
O(X,τ

+
) such that A 

 V and xÏV. Let yÎπgb
+

-cl({x})∩A. Since yÎ
Ωgb

+({y}).                         

Therefore for every πgb
+

-open set G {y} in (X,τ
+

), x

ÎG. Since yÎA and A V, yÎV where VÎ  πGB
+

O(X,τ
+

).Hence xÎV.  
By this contradiction, we get xÎΩgb

+(A). 
Ωgb

+ - Closed Sets And Its Properties                                                          

Definition 4.1: (1) Let A be a subset of a space (X, τ
+

). Then A is called a Ωgb
+-closed set         if A = S∩C  

where S is Ωgb
+ -set and C is a closed set.                                                                                                     

(2) The complement of a Ωgb
+ -closed set is called a 

Ωgb
+-open set.                                                 (3) The 

collection of all Ωgb
+-open sets in  (X,τ

+
) is denoted 

by Ωgb
+ O(X, τ

+
).The collection of all Ωgb

+-closed sets 

in  (x, τ
+

) is denoted by Ωgb
+
 C(X, τ

+
).                                                                

(4) A point xÎX is called Ωgb
+-cluster point of A if for 

every Ωgb
+-open set U containing x, A∩U ≠ ɸ.                                                                                                                                                     

(5) The set of all Ωgb
+-cluster points of A is called the 

Ωgb
+-closure of A and is denoted by               Ωgb

+ - 

cl(A). Let (X, τ
+

) be a topological space and A, B and 

A k where KÎ I, subsets of X. Then we have the 

following properties.                                                                                                                     
Proposition4.2:  A  Ωgb

+ -cl(A).                                                                                           

Proof: Let x ÏΩgb
+-cl(A) .Then x is not a Ωgb

+-cluster 
point of A. So there exists a Ωgb

+ -open set U 

containing x such that   A∩U =  ɸ and hence x  A.                                                            
Proposition4.3: Ωgb

+
-cl(A) = ∩{F/A  F and F is Ωgb

+
 

-closed}                                                    

Proof: Let x ÏΩgb
+- cl(A). 

Then there exists a Ωgb
+-open set  U containing x 

such that A∩U =  ɸ  

Take  F=U
c

.  

Then F is Ωgb
+ -closed, A  F and xÏF and hence xÏ

∩{F/A  F and F is Ωgb
+-closed}.Similarly Ωgb

+ - cl(A) 
 {F/A  F and F is Ωgb

+  -closed}.                                       
Proposition4.4: If A   B, then Ωgb

+-cl(A) Ì Ωgb
+- 

cl(B)                                                                  

Proof: Let xÏΩgb
+-cl(B). 

Then there exists Ωgb
+a-open set U containing x such 

that B ∩ U =ɸ.  
Since A  B, A∩U =ɸ.  
Hence x is not a Ωgb

+ - cluster point of A.  

Therefore xÏΩgb
+-cl(A)       

Proposition4.5: A is Ωgb
+ -closed  iff  A= Ωgb

+-cl(A).                                  
Proof: Suppose A is Ωgb

+-closed.  

Let xÏA, then x  Ac and Ac is Ωgb
+-open. Take Ac = 

U , Then U is a Ωgb
+-open set containing x and 

A∩U=ɸ.  

Hence xÏ Ωgb
+-cl(A).                       

Hence Ωgb
+-cl(A)  A .By using Proposition 4.2, we 

get AÌ  Ωgb
+-cl(A).                             Hence A = Ωgb

+-
cl(A).  
Conversely, Suppose A= Ωgb

+-cl(A) .                                                  
Since A= ∩{F/A  F and F is Ωgb

+ -closed} ,by 
Proposition 4.3, A is Ωgb

+ -closed.  Proposition4.6: 
Ωgb

+ -cl(A)  is  Ωgb
+ closed.                                                                                       

Proof: By using proposition 4.2 and 4.4,      we have 
Ωgb

+-cl(A)  Ωgb
+-cl (Ωgb

+-cl(A)).                               Let 
xÎΩgb

+-cl(Ωgb
+-cl(A))  x is a Ωgb

+-cluster point of 
Ωgb

+ -cl(A).That implies for every Ωgb
+-open set U 

containing x, ( Ωgb
+-cl(A)) ∩ U≠ ɸ. Let yÎΩgb

+-
cl(A)∩U. Then y is a Ωgb

+-cluster point of A. 
Therefore for every Ωgb

+-open set G containing y,  
A∩G ≠ɸ. Since U is Ωgb

+-open and yÎU, A∩ U ≠ɸ.  
Hence xÎΩgb

+-cl(A).  
Hence Ωgb

+-cl(A) = Ωgb
+-cl(Ωgb

+-cl(A)).                                  
By Proposition4.5, Ωgb

+-cl(A) is Ωgb
+-closed.                                                                                       

Remark 4.7: (1) X and ɸ  are both Ωgb
+-open and 

Ωgb
+-closed.                                                                (2) By 

using properties 4.3 and 4.6, Ωgb
+
-cl(A) is the smallest 

Ωgb
+-closed set containing A. Proposition4.8: If A k  

is Ωgb
+ -closed for each KÎ I, then 

k
Ik

AÇ
Î

 is Ωgb
+ -

closed.   Proof: Let A =
k

Ik

AÇ
Î

and xÎΩgb
+-cl(A).  

Then x is Ωgb
+-cluster point of A.  

Hence for every Ωgb
+-open set U containing x, A∩U 

≠ɸ  )( k
Ik

AÇ
Î

 ∩U≠ɸ . 

That implies kA ∩U≠ɸ for each K Î I.         
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If xÏA, then for some kÎ I, xÏAk. Since A k is Ωgb
+-

closed, A k  = Ωgb
+-cl(A k )   Hence  xÏΩgb

+-cl(A k ). 

Therefore x is not a Ωgb
+-cluster point of A k . So $  a 

Ωgb
+-open set  V containing x  such that  A k ∩V = ɸ. 

By this contradiction, xÎA. Therefore Ωgb
+-cl(A)  A. 

By Proposition 4.2, AÌ Ωgb
+-cl(A). Hence A= Ωgb

+ -
cl(A).  
By Proposition 4.5, A is Ωgb

+-closed.  

Hence Ç
ÎIk

A k  is Ωgb
+-closed 
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