ON Ω_{gb}^{+} AND \mho_{gb}^{+} SETS IN SIMPLE EXTENSION IDEAL TOPOLOGICAL SPACES

T.MADHUMATHI, DR. F. NIRMALA IRUDAYAM

Abstract: This paper serves as a platform to discuss and bring out the basic properties of newly defined Ω_{gb}^+ and \mho_{gb}^+ -sets, under the light of simple extension topological spaces.

Introduction: A new class of generalized open sets called b-open sets in topological spaces was defined by Andrijevic [2]. The class of all b open sets generates the same topology as the class of all preopen sets. In 1986, Maki [9] introduced the concept of generalized Λ sets and defined the associated closure operators by using the work of Levine [7] and Dunhem [4]. Caldas and Dontchev [3] introduced Λ_s sets, V_s -sets, $g\Lambda_s$ -sets and gV_s -sets. Ganster and et al. [5] introduced the notion of pre Λ -sets and pre V-sets and obtained new topologies via these sets. M.E. Abd El-Monsef et al. [1] defined $b\Lambda$ -sets and bV-sets on a topological space and proved that it forms a topology. In 1963 Levine [8] introduced the concept of a simple topology τ as $\tau(B) = \{(B \cap O) \cup O' / O, O\}$ extension

 $\in \tau$ and $B \notin \tau$ }. Sr. I. Arockiarani and F. Nirmala Irudayam [10] introduced the concept of b⁺-open sets in extended topological spaces. S. Reena and F. Nirmala Irudayam [12] devised a new form of continuity and T. Noiri, Sr. I. Arockiarani and F. Nirmala Irudayam [11] coined the idea of Ω_{gb}^{+*} , $\overline{\Omega}_{gb}^{+*}$ sets in simple extended topological spaces.

Preliminaries: All through the paper the space X is a SEITS in which no separation axioms are assumed unless and otherwise stated.

Definition 2.1: A subset A of a topological space (X, τ) is said to be, (i) bopen set[2], if A \subseteq cl(int(A)) \cup int(cl(A)) and bclosed set cl(int(A)) \cup int(cl(A)) \subseteq A. (ii) a generalized closed (briefly g-closed) [6] if cl(A) \subset U whenever A \subset U and U is open.

Definition 2.2[13]: A subset A of (X, τ) is called πgb closed if $bcl(A) \subset U$ whenever $A \subset U$ and U is π open in (X, τ) . By $\pi GBO(X, \tau)$ we mean the family of all πgb - closed subsets of the space (X, τ) . **Definition 2.2[10]:** A subset A of a topological space

 (X, τ^+) is said to be, (i) a b⁺-open set

If $A \subseteq cl^{+}(int(A)) \cup int(cl^{+}(A))$. (ii) a generalized b⁺-closed (briefly gb⁺-closed) if b⁺

 $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

Definition 2.3[12]: A subset A of (X, τ^+) is called $\pi g b^+$ -closed if $b^+ cl(A) \subset U$ whenever $A \subset U$ and U is π^+ -open in (X, τ^+) . By $\pi GBO^+(X, \tau^+)$ we

mean the family of all $\pi g b^+$ closed subsets of the space (X, τ^+) .

Definition 2.3[11]: Let (X, τ^+, I) be a simple extension ideal topological space (SEITS) and a subset of X. We defined Ω_{gb}^{+*} (A) and \mho_{gb}^{+*} (A) as follows, Ω_{gb}^{+*} (A)

 $= \cap \{G \colon A \subseteq G, G \in BI^+O(X, \tau^+, I)\}$

 $\mathfrak{O}_{gb}^{*^*}(\mathsf{A}) = \bigcup \{F : F \subseteq A, F \in BI^+C(X, \tau^+, I)\}.$

$$\Omega_{gb}^{+}(S) = \bigcap \{G \mid G \in \pi GB^+O(X, \tau^+) \text{ and } S \subseteq G \}$$

 $\mho_{gb}^+(S) = \bigcup \{F \mid F \in \pi GB^+C(X, \tau^+) \text{ and } S \supseteq F\}$

Lemma 3.2: For subsets S, Q and $S_i, i \in I$ of a topological space (X, τ^+) the following properties hold

(1) $S \subseteq \Omega_{gb}^{+}(S)$

(2) $Q \subseteq S \Longrightarrow \Omega_{gb}^{+}(Q) \subseteq \Omega_{gb}^{+}(S)$ (3) $\Omega_{gb}^{+}(\Omega_{gb}^{+}(S))$ = $\Omega_{gb}^{+}(S)$ (4) If $S \in \pi GB^{+}O(X, \tau^{+})$, then $S = \Omega_{gb}^{+}(S)$ (5) $\Omega_{gb}^{+}(\cup \{S_{i}:i \in I\}) = \cup \{\Omega_{gb}^{+}(S_{i}):i \in I\}$ (6) $\Omega_{gb}^{+}(\cap \{S_{i}:i \in I\}) \subseteq \cap \{\Omega_{gb}^{+}(S_{i}):i \in I\}$ (7) $\Omega_{gb}^{+}(S^{c}) = (\mho_{gb}^{+}(S))^{c}$ (8) $\Omega_{gb}^{+}(X-S)=X-\mho_{gb}^{+}(S)$

Proof: (1) Let $x \notin \Omega_{gb}^+(S)$, then there exists a πgb^+ - open set G such that $S \subseteq G$ and $x \notin G$.

Hence $\mathbf{x} \notin S$ and so $S \subseteq \Omega_{gb}^+(S)$

(2) Let $x \notin \Omega_{gb}^{+}(S)$, then there exists a $\pi g b^{+}$ -open set G such that $S \subseteq G$ and $x \notin G$. By our assumption $Q \subseteq S$. Hence $Q \subseteq G$ and hence $x \notin \Omega_{gb}^{+}(Q)$

Hence $Q \subseteq S \Rightarrow \Omega_{gb}^+(Q) \subseteq \Omega_{gb}^+(S)$.

(3) From (1) and (2) using (1), $S \subseteq \Omega_{gb}^{+}(S)$ $\Rightarrow \qquad \Omega_{gb}^{+}(S) \subseteq \qquad \Omega_{gb}^{+}(\Omega_{gb}^{+}(S))$(1) If $x \notin \Omega_{gb}^{+}(S)$, then there exists a $\pi g b^{+}$ -open set G such that $S \subseteq G$ and $x \notin G$ from the definition of $\Omega_{gb}^{+}(S), \ \Omega_{gb}^{+}(S) \subseteq G$ and hence $x \notin \Omega_{gb}^{+}(\Omega_{gb}^{+}(S))$

Therefore Ω_{gb}^+ (Ω_{gb}^+ (S)) $\subseteq \Omega_{gb}^+$ (S).....(2) From (1) and (2) we get. Ω_{gb}^+ (Ω_{gb}^+ (S)) = Ω_{gb}^+ (S)

 \mathcal{O}_{gb}^+ -set.

(4) From definition if $S \in \pi GB^+ O(X, \tau^+)$, then $S \in$ $\Omega_{gb}^{+}(S) \Rightarrow S \in S.$ Therefore $\Omega_{gb}^+(S) \subseteq S$ (i). From (1) $S \subseteq \Omega_{gb}^+(S)$ (ii). Hence from (i) and (ii), $S = \Omega_{gb}^+$ (S) Let $S = \bigcup \{S_i : i \in I\}$. (5)By (2) we have, $\cup \{\Omega_{gb}^{+}(S_i): i \in I\} \subseteq \Omega_{gb}^{+}(S)$. If $x \notin \bigcup \{\Omega_{gb}^{+}(S_i): i \in I\}$, then, for each $i \in I$, there exists $G_i \in \pi GB^+ O(X, \tau^+)$, such that $S_i \subseteq G_i$ and $x \notin G_i$. If $G = \bigcup \{G_i : i \in I\}$ then $G \in$ $\pi GB^+O(X, \tau^+)$ with S⊆G and $x \notin G$. Hence $x \notin \Omega_{gb}^+(S)$ and hence (5) holds. (6) Follows from definition (3.1) (7) Let $x \in \Omega_{gb}^{+}(S^{c})$. Then for every πgb^{+} -open set G containing S^c , $x \in G$. Hence $x \notin G^c$ for every $\pi g b^+$ -closed set $G^c \subseteq S$. Hence $x \notin \mathcal{O}_{gb}^+(S)$ Hence $x \in (\mathcal{O}_{gb}^+(S^c))$ Therefore $\Omega_{gb}^{+}(S^c) \subseteq (\mho_{gb}^{+}(S))^c$(1). Let $\mathbf{x} \in (\mathfrak{O}_{gb}^+(S))^c \Longrightarrow \mathbf{x} \notin \mathfrak{O}_{gb}^+(S)$. Then for every $\pi g b^+$ -closed set $G^c \subset S$, $\mathbf{X} \notin G^{c}$ $\Rightarrow x \in G$ for every $\pi g b^+$ -open set G containing S^c . $S^c \subset G$. Hence $\mathbf{x} \in \Omega_{gb}^+$ (S^c). Therefore $\Omega_{gb}^+(S^c) \supseteq (\mho_{gb}^+(S))^c \dots (2).$ From (1) and (2), $\Omega_{gb}^{+}(S^{c}) = (\mho_{gb}^{+}(S))^{c}$ (8) Follows from definition (3.1) **Lemma 3.3:** For subsets S, Q and $S_i, i \in I$ of a topological space (X, τ^{+}) the following properties hold $\mathcal{O}_{gb}^+(S) \subseteq S$ 1. $Q \subseteq S \Longrightarrow \mathfrak{O}_{gb}^+(Q) \subseteq \mathfrak{O}_{gb}^+(S)$ 2. $\mathcal{O}_{gb}^{+}(\mathcal{O}_{gb}^{+}(S)) = \mathcal{O}_{gb}^{+}(S)$ 3. If $S \in \pi GB^+C(X,\tau^+)$, then $S = \mathcal{O}_{ob}^+(S)$ $\mathbf{\nabla}_{gb}^{+}(\bigcap\{S_{i}:i\in I\})=\bigcap\{\mathbf{\nabla}_{gb}^{+}(S_{i}):i\in I\}$ 4. $\cup \{ \mathfrak{O}_{gb}^{+}(\mathbf{S}_i) : i \in I \}) \subseteq \mathfrak{O}_{gb}^{+}(\cup \{ (S_i) : i \in I \})$ **Definition 3.4:** A subset S of a space (X, τ^+) is called a (1) $gb^+ - \Omega$ -set briefly Ω_{gb}^+ -set if $S = \Omega_{gb}^+$ (S) (2) gb

a (1) gb⁺ - Ω -set briefly Ω_{gb}^+ -set if S= Ω_{gb}^+ (S) (2) gb⁺ - \Im -set briefly \Im_{gb}^+ -set if S= \Im_{gb}^+ (S) The set of all Ω_{gb}^+ -sets (respectively \Im_{gb}^+ -sets) is denoted by Ω_{gb}^+ (X, τ^+) (resp. $\Im_{gb}^+(X, \tau^+)$).

Remark 3.5: Clearly Ω - sets are $gb^+ - \Omega$ sets and \Im sets are $gb^+ - \Im$ -sets. Observe that a subset S is a gb^+ - Ω- set if S^c is a gb⁺ - \mho -set. Also every gb⁺-Ω-set is a πgb⁺-open set.

Theorem 3.6: For a space (X, τ^+), the following statements hold (1) ϕ and X are Ω_{gb}^+ -sets and $\overline{\Omega}_{gb}^+$ -sets

(2) Every union of \mho_{gb}^+ -sets(resp. Ω_{gb}^+ -sets) is a \mho_{gb}^+ -set(resp. Ω_{gb}^+ -sets) (3) Every intersection of Ω_{gb}^+ -sets (resp. \mho_{gb}^+ sets) is a Ω_{gb}^+ -set(resp. \mho_{gb}^+ sets) **Proof:**(1) It is obvious.

(2) Let $\{S_i \mid i \in I\}$ be a family of \mathfrak{O}_{gb}^+ -sets in (X, τ^+) .

Then $S_i = \mathcal{O}_{gb}^+(S_i)$ for each $i \in I$.

Let $S = \bigcup S_i$. Then

 $\mathcal{O}_{gb}^{+}(S) = \mathcal{O}_{gb}^{+}(\bigcup_{i \in I} S_i) \supseteq \bigcup_{i \in I} \mathcal{O}_{gb}^{+}(S_i) = \bigcup_{i \in I} S_i = S \text{ Also}$

a

 $\mho_{\rm gb}^{+}(S) \subseteq S.$

Hence S is (3) By using

$$\Omega_{gb}^{+}(\bigcap_{i\in I} S_i) \subseteq \bigcap_{i\in I} \Omega_{gb}^{+}(S_i) \subseteq \bigcap_{i\in I} S_i = S.$$

Also $S \subseteq \Omega_{gb}^+(S)$. Hence S is a Ω_{gb}^+ -set.

Definition3.7: Let (X, τ^+) be a topological space then the πgb^+ -closure of A denoted by πgb^+ cl (A) is defined by

 $\pi gb^{+} - cl(A) = \bigcap \{ F | F \in \pi GB^{+}C (X, \tau^{+}) \& F \supset A \}$ **Lemma 3.8:** Let (X, τ^{+}) be a topological space and $x \in X$. Then $y \in \Omega_{gb}^{+}(\{x\})$ iff $x \in \pi gb^{+} - cl$ $(\{y\})$.

Proof: Suppose $y \in \Omega_{gb}^{+}(\{x\})$. Then for every πgb^{+} -open set $G \supseteq \{x\}, y \in G$. If $x \notin \pi gb^{+}$ -cl ($\{y\}$),

then \exists H \in π GB⁺C(X, τ^+) \ni {y} \subset H and

 $x \notin$ H. This implies $x \in X$ -H,

X-H ∈ π GB⁺O (X,τ⁺) and y∉X-H.

Take X-H =G. Then $G \in \pi GB^+ O(X, \tau^+)$,

 ${x}⊆ G and y ∉ G which is a contradiction. Hence x ∈ <math>\pi gb^+ cl({y})$.

Conversely, suppose $x \in \pi gb^+ -cl(\{y\})$ then for every $\pi gb^+ -closed$ set $G \supset \{y\}, x \in G$.

If $y \notin \Omega_{gb}^+({x})$ then there exists $H \in \pi GB^+ O(X, \tau^+)$ such that ${x}\subseteq H$ and $y \notin H$. Take X-H =G.

Then $G \in \pi GB^+ C(X, \tau^+)$, $y \in G$ and $x \notin G$.

So \exists a π gb⁺-closed set G \supset {y} \ni x \notin G.

By this contradiction, we get $y \in \Omega_{gb}^{+}({x})$. **Theorem 3.9:** The following statements are

equivalent for any points x and y in a topological space (X, τ^+). $(1) \ \Omega_{\mathrm{gb}}^{\phantom{\mathrm{gb}}+}(\{x\}) \ \neq \Omega_{\mathrm{gb}}^{\phantom{\mathrm{gb}}+}(\{y\})$ πgb^+ -cl (2) $({x})$ $\pi gb^{+} - cl(\{y\})$ Proof: (1) \Rightarrow (2) Suppose $\Omega_{gb}^+(\{x\}) \neq \Omega_{gb}^+(\{y\})$. Then $\exists z \in X \exists z \in (\{x\})$ and $z \in \Omega_{gb}^+(\{y\})$. Therefore x $\in \pi gb^+$ -cl ({z}) and $y \in \pi gb^+$ -cl({z}. Hence {x}) πgb^+ -cl $\{y\}\cap \pi gb^+-cl(\{z\}) \neq \phi.$ $(\{z\}) \neq \phi$ and Since $x \in \pi gb^+-cl(\{z\})$, $\pi gb^+-cl\{x\} \subset \pi gb^+-cl(\{z\})$ and hence $\{y\} \cap \pi gb^+$ -cl $(\{x\}) \neq \phi$. Thus πgb⁺-cl $({x})$ πgb⁺ $cl({y}).$ ≠ (2) \Rightarrow (1). Suppose $\Omega_{gb}^+(\{x\}) \neq \Omega_{gb}^+(\{y\})$, then $\exists z \in$ πgb^+ -cl ({x}) and $z \in \pi gb^+cl({y})$. Therefore $x \in$ $\Omega_{gb}^+(\{x\})$ and $y \notin \Omega_{gb}^+(\{z\})$. So \exists a π gb⁺-open set G \supset {z} such that x \in G and y \notin G.Hence $y \notin \Omega_{gb}^+(\{x\})$. Hence $\Omega_{gb}^{+}({x}) \neq \Omega_{gb}^{+}({y})$. Lemma 3.10: Let (X, τ^{+}) be a topological space and $A \in \pi GB^+O(X,\tau^+)$. $\Omega_{gh}^{+}(A) = \{x \in X \mid A \in X\}$ $\pi gb^+ - cl(\{x\}) \cap A \neq$ Then φ}. **Proof:** Let $x \in \pi GB^+ O(X, \tau^+)$, $A = \Omega_{gb}^+(A)$. Also $x \in \pi gb^+ - cl(\{x\})$. Hence πgb^+ -cl{x} $\cap A \neq \phi$. Conversely, let $x \in X$ such that $\pi gb^+ - cl(\{x\}) \cap A \neq \phi$. If $x \notin \Omega_{gb}^{+}(A)$, then $\exists V \in \pi GB^{+}O(X, \tau^{+})$ such that A \subseteq V and $x \notin V$. Let $y \in \pi gb^+ - cl(\{x\}) \cap A$. Since $y \in g$ $\Omega_{gb}^{+}(\{y\}).$ Therefore for every πgb^+ -open set $G \supseteq \{y\}$ in (X, τ^+) , x \in G. Since $y \in A$ and $A \subseteq V$, $y \in V$ where $V \in \pi GB^+$ $O(X,\tau^+)$. Hence $x \in V$. By this contradiction, we get $x \in \Omega_{gb}^+(A)$. - Closed Sets And Its Properties Ω_{gb}^+ **Definition 4.1:** (1) Let A be a subset of a space (X, τ^+). Then A is called a $\Omega_{gb}^{+}\text{-}closed$ set if $A = S \cap C$ where S is Ω_{gb}^{+} -set and C is a closed set. (2) The complement of a Ω_{gb}^{+} -closed set is called a $\Omega_{\rm gb}^+$ -open set. (3) The collection of all Ω_{gb}^{+} -open sets in (X, τ^{+}) is denoted by $\Omega_{gb}^{+} O(X, \tau^{+})$. The collection of all Ω_{gb}^{+} -closed sets (x, τ^+) is denoted by Ω_{gb}^+ C(X, τ^+). in (4) A point $x \in X$ is called Ω_{gb}^+ -cluster point of A if for every Ω_{gb}^+ -open set U containing x, $A \cap U \neq \phi$. (5) The set of all Ω_{gb}^{+} -cluster points of A is called the Ω_{gb}^{+} -closure of A and is denoted by $\Omega_{\rm gb}^+$ cl(A). Let (X, τ^+) be a topological space and A, B and A_k where $K \in I$, subsets of X. Then we have the following properties. $\Omega_{gb}{}^{\scriptscriptstyle +}$ Proposition_{4.2}: А \subset -cl(A). **Proof:** Let $x \notin \Omega_{gb}^+$ -cl(A) .Then x is not a Ω_{gb}^+ -cluster point of A. So there exists a Ω_{gb}^{+} -open set U

containing x such that $A \cap U = \phi$ and hence $x \notin A$. **Proposition4.3:** Ω_{gb}^+ -cl(A) = \cap {F/A \subset F and F is Ω_{gb}^+ -closed}

Proof: Let $x \notin \Omega_{gb}^+$ - cl(A).

Then there exists a $\Omega_{gb}{}^{*}\text{-open set}~U$ containing x such that $A\cap U=\varphi$

Take F=U^c.

Then F is Ω_{gb}^+ -closed, $A \subset F$ and $x \notin F$ and hence $x \notin \cap \{F/A \subset F \text{ and } F \text{ is } \Omega_{gb}^+\text{-closed}\}$.Similarly Ω_{gb}^+ - cl(A) $\subset \{F/A \subset F \text{ and } F \text{ is } \Omega_{gb}^+ \text{-closed}\}$. **Proposition4.4:** If $A \subset B$, then $\Omega_{gb}^+\text{-cl}(A) \subset \Omega_{gb}^+\text{-cl}(B)$

Proof: Let $x \notin \Omega_{gb}^+$ -cl(B).

Then there exists $\Omega_{gb}^{+}a$ -open set U containing x such that $B \cap U = \phi$.

Since $A \subset B$, $A \cap U = \phi$.

Hence x is not a Ω_{gb}^{+} - cluster point of A.

Therefore $x \notin \Omega_{gb}^+$ -cl(A)

Proposition4.5: A is Ω_{gb}^+ -closed iff A= Ω_{gb}^+ -cl(A). **Proof:** Suppose A is Ω_{gb}^+ -closed.

Let $x \notin A$, then $x \in A^c$ and A^c is Ω_{gb}^+ -open. Take $A^c = U$, Then U is a Ω_{gb}^+ -open set containing x and $A \cap U = \phi$.

Hence $x \notin \Omega_{gb}^+$ -cl(A).

Hence Ω_{gb}^+ -cl(A) \subset A .By using Proposition 4.2, we get $A \subset \Omega_{gb}^+$ -cl(A). Hence $A = \Omega_{gb}^+$ -cl(A).

Conversely, Suppose Ω_{gb}^{+} -cl(A) A= Since $A = \bigcap \{F/A \subset F \text{ and } F \text{ is } \Omega_{gb}^+ \text{ -closed} \}$, by Proposition 4.3, A is Ω_{gb}^+ -closed. **Proposition4.6:** $\Omega_{\rm gb}^+$ -cl(A)is $\Omega_{\rm gb}^+$ closed. **Proof:** By using proposition 4.2 and 4.4, we have $\Omega_{gb}^{+}-cl(A) \subset \Omega_{gb}^{+}-cl(\Omega_{gb}^{+}-cl(A)).$ Let $x \in \Omega_{gb}^{+}-cl(\Omega_{gb}^{+}-cl(A)) \Rightarrow x \text{ is a } \Omega_{gb}^{+}-cluster \text{ point of}$ Ω_{gb}^{+} -cl(A).That implies for every Ω_{gb}^{+} -open set U containing x, $(\Omega_{gb}^+ - cl(A)) \cap U \neq \phi$. Let $y \in \Omega_{gb}^+ - cl(A)$ $cl(A)\cap U$. Then y is a Ω_{gb}^+ -cluster point of A. Therefore for every Ω_{gb}^{+} -open set G containing y, A∩G ≠ ϕ . Since U is Ω_{gb}^+ -open and y ∈ U, A∩ U ≠ ϕ . Hence $x \in \Omega_{gb}^+$ -cl(A).

Hence Ω_{gb}^{+} -cl(A) = Ω_{gb}^{+} -cl(Ω_{gb}^{+} -cl(A)). By Proposition4.5, Ω_{gb}^{+} -cl(A) is Ω_{gb}^{+} -closed. **Remark 4.7:** (1) X and ϕ are both Ω_{gb}^{+} -open and Ω_{gb}^{+} -closed. (2) By using properties 4.3 and 4.6, Ω_{gb}^{+} -cl(A) is the smallest Ω_{gb}^{+} -closed set containing A. **Proposition4.8:** If A_k is Ω_{gb}^{+} -closed for each K \in I, then $\bigcap_{k \in I} A_k$ is Ω_{gb}^{+} closed. **Proof:** Let A = $\bigcap_{k \in I} A_k$ and $x \in \Omega_{gb}^{+}$ -cl(A).

Then x is Ω_{gb}^+ -cluster point of A.

Hence for every Ω_{gb}^+ -open set U containing x, $A \cap U \neq \phi \Rightarrow (\bigcap A_k) \cap U \neq \phi$.

That implies $A_k \cap U \neq \phi$ for each $K \in I$.

If $x \notin A$, then for some $k \in I$, $x \notin A_k$. Since A_k is Ω_{gb}^+ closed, $A_k = \Omega_{gb}^+$ -cl(A_k) Hence $x \notin \Omega_{gb}^+$ -cl(A_k). Therefore x is not a Ω_{gb}^+ -cluster point of A_k . So \exists a Ω_{gb}^+ -open set V containing x such that $A_k \cap V = \phi$. By this contradiction, $x \in A$. Therefore Ω_{gb}^+ -cl(A) $\subset A$.

References:

- 1. Abd El-Monsef M., El-Atik A.A., and El-Sharkasy A.A., "Some topologies induced by b- open sets", Kyungpook Math. J.,
- Nisu Jain, Shelly., Numerical Solution of Mathematical Model of A Washing Zone of Rotary Vaccum Washer Using Orthogonal Collocation Method; Mathematical Sciences international Research Journal ISSN 2278 – 8697 Vol 4 Issue 1 (2015), Pg 188-191
- 3. Andrijevic D., "On b-open sets", Mat. Vesnik 48 (1996), no. 1-2, 59-64.
- Caldas M., and Dontchev J.G., "Λ_s -sets and V_s sets", Mem. Fac. Sci.Kochi. Univ. Math., 21(2000), 21-30.
- 5. Parvinder Singh, Graph theory and Travelling Problems; Mathematical Sciences International Research Journal ISSN 2278 – 8697 Vol 3 Issue 1 (2014), Pg 405-408
- 6. Dunham W., "A new closure operator for non-T₁ topologies", Kyungpook Math. J. 22 (1982), 55–60.
- Ganster M., Jafari S., and Noiro T., "On pre-Λ-sets and pre-V-sets", Acta. Math. Hungar., 95(4)(2002), 337-343.
- 8. Levine N., "Generalized closed sets in topology", Rend. Circ. Mat. Palermo (2)19(1970), 89-96.
- 9. Renukadevi S. Dyavanal, Ashok Rathod, Pseudo-Deficiency And Uniqueness Theorem In Annuli; Mathematical Sciences International Research Journal : ISSN 2278-8697Volume 4 Issue 2 (2015), Pg 298-300
- Levine N., "Semi open sets and semi-continuity in topological spaces", Amer. math. Monthly, 70 (1963), 36-41.
- 11. Levine N., "simple extension of topology", Amer.math. Monthly, 71 (1964), 22-105.
- Maki H., "Generalized ∧-sets and the associated closure operator", Special Issue in Commemoration of Prof. Kazusada Ikeda's Retirement 1. Oct (1986), 139–146.

By Proposition 4.2, $A \subset \Omega_{gb}^+$ -cl(A). Hence $A = \Omega_{gb}^+$ - cl(A).

By Proposition 4.5, A is Ω_{gb}^+ -closed.

Hence $\bigcap_{k \in I} A_k$ is Ω_{gb}^+ -closed

- A.Praveen Prakash, V.S.Shrimathi, J.Esther Jerlin, A Study on the Issues/Problems Pertaining to Single Parents; Mathematical Sciences international Research Journal ISSN 2278 – 8697 Vol 3 Issue 2 (2014), Pg 788-791
- 14. Nirmala Irudayam F., and Arokiarani Sr.I., "A note on the weaker form of bI set and its generalization in SEITS", International Journal of Computer application, Issue 2, vol.4(Aug 2012), 42-54
- 15. M.Veera Krishna, L.Hari Krishna, S.V.Suneetha, Radiative Heat Transfer on Unsteady Mhd Oscillatory; Mathematical Sciences international Research Journal ISSN 2278 - 8697 Vol 3 Issue 2 (2014), Pg 803-810
- 16. Noiri T., Arockiarani Sr.I., and Nirmala Irudayam F., "On Some Topologies Induced By BI⁺ Open Sets in Simple Extension Ideal Topological Spaces", International Journal of Mathematical Archive-4(1), 2013, 130-135
- 17. Dhanya Noble, Ameenudeen Pe, Jilu James, Dona Joseph, Residue Number System And Its Applications; Mathematical Sciences International Research Journal : ISSN 2278-8697Volume 4 Issue 2 (2015), Pg 301-306
- 18. Reena S., and Nirmala Irudayam F., "A new Weaker form of πgb-continuity", International Journal of Innovative Research in Science, Engineering and Technology, Vol.5, Issue.5, (2016), 8676-8682
- 19. K. Kumara Swamy, T. Phaneendra, Another Proof Of Mohanta's Fixed Point Theorem In Gmetric Space; Mathematical Sciences International Research Journal : ISSN 2278-8697Volume 4 Issue 2 (2015), Pg 284-287
- 20. Sreeja D., and Janaki C.,"On πgb- Closed Sets in Topological Spaces", International Journal of Mathematical Archive-2(8), 2011, 1314-1320.
- T. Madhumathi, M. Phil Research Scholar, Dr. F. Nirmala Irudayam Assistant Professor, Department of Mathematics, Nirmala College for Women, Coimbatore, India.