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Abstract: The aim of this paper is to investigate the Multiple Attribute Group Decision Making (MAGDM) 
problems with intuitionistic fuzzy sets. The unknown decision maker weights are derived through the Jacobi 
iteration and SOR method by obtaining the solution of linear algebraic equations and it is utilized to solve the 
MAGDM problems. A numerical illustration is given to show the effectiveness and feasibility of the proposed 
approach.  
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Introduction: Multiple Attribute Group Decision Making (MAGDM) problems play a vital role in today’s 
comprehensive world.  The decision makers have difficulties in assigning crisp values as scoring to the criteria. 
The main characteristic of decision making problem is fuzziness and it was introduced by Zadeh [20]. 
Atanassov [1-3] and Atanassov & Gargov [4] expanded the Intuitionistic Fuzzy Set (IFS), using interval value 
to express membership and non-membership function of IFSs.  Chen & Tan [5] proposed multicriteria fuzzy 
decision making problems based on vague sets. Zeng & Li [21] introduced the correlation coefficient of 
intuitionistic fuzzy sets. Robinson & Amirtharaj [9-17] and Robinson & Jeeva [18] defined correlation 
coefficient for different higher order intuitionistic fuzzy sets and utilized in MAGDM problems. Li [7] and Wei 
[19] investigated MAGDM models and methods using intuitionistic fuzzy sets. In this work, numerical 
methods are proposed for determining weights of decision makers and used for MAGDM problems.  Jain et al. 
[6] and Rice [8] discussed several numerical methods for scientific and engineering computation. Here, Gauss-
Jacobi iteration and SOR method are used to obtain the solution of linear algebraic equation, which are further 
utilized to derive the decision maker weights in intuitionistic fuzzy decision making problems. The feasibility 
and effectiveness of the proposed method are illustrated using numerical examples.  
 
Preliminaries: In this section, some basic definitions and arithmetic aggregation operators of Intuitionistic 
Fuzzy Numbers (IFNs) are presented. 
 
Definition: 1 Intuitionistic Fuzzy Set: Let a set X be fixed. An IFS Ã in X is an object of the form 
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Definition: 2   Let ( ), ,j j ja m g=j j j, ,(j j j(a j j jm gj j jj j j, ,, ,=  for all 1,2,...,j n= be a collection of Intuitionistic fuzzy values.  The 

Intuitionistic Fuzzy Weighted Arithmetic Averaging Operator (IFWAA), : nIFWAA Q Q® is defined as 
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Definition: 3     An Intuitionistic Fuzzy Hybrid Aggregation (IFHA) operator of dimension n is a mapping 

: nIFHA Q Q®   that has an associated vector   ( )1 2, , ,
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Determining Experts Weights For Magdm Problems Using Jacobi-Iteration And SOR Method: 
Iteration Method: Iteration methods in numerical methods are attractive for sparse matrices, because they 
use much less memory than direct methods, and so they might be used even though they require more 
execution time. Many of the problems of numerical analysis can be deduced to the problem of solving linear 
systems of equations.  The use of matrix notation is not only convenient, but extremely powerful, in bringing 
out the relationship between variables. Now let us see about Gauss-Jacobi iteration and SOR method. 
 

Gauss- Jacobi Iteration Method: We assume that the quantities iia  are pivot elements. The exact solution 

may be written in the form 

( )11 1 12 2 13 3 1 1... n na x a x a x a x b= - + + + +
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This method is called the method of simultaneous displacement. In the matrix form, the method can be 

written as: ( ) ( ) ( )1 1 1k kx D L U x D b+ - -= - + +
    

             
( )

, 0,1,2
kH x c k= + =     (1)  

Where ( )1 1& .H D L U c D b- -= - + =
 
L & U are lower and upper triangular matrices with zero diagonal 

entries. D is the diagonal matrix such that A=L+D+U. 

Equation ( )1 ,  can alternatively be written as ( ) ( ) ( )1 1k k kx x D b Ax+ - é ù= + -ë û
( ) ( )1 .
k kv D r= -  Where 

( ) ( ) ( )1k k kv x x+= -   is the error in the approximation and  
( ) ( ) ( ) ( ) or 
k k k kr b Ax Dv r= - =  is the residual 

vector. The Jacobi iteration method in an error format is 
( ) ( ) ( )1

.
k k kx x v+ = +  

 Consider, the system of equations 

1 2 3 1 2 3 1 2 34 2;  5 2 6;  2 3 4.x x x x x x x x x+ + = + + = + + = By using Gauss Jacobi iteration method, we have 

0.375 0.0034 0.1833

1.02 0.7384 0.9892

0.9666 0.5284 0.8399

A

-é ù
ê ú= ê ú
ê úë û

  

By using Gauss-Jacobi method we get the approximate solution and the weight vector is obtained by 
decomposing the approximate solution which is given by:  

(0.118510818,0.468475346,0.413013859).g =
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Successive Over Relaxation (SOR) Method: This method is a generalization of the Gauss-Seidal method. 
This method is often used when the co-efficient matrix of the system of equations is symmetric.  

We define an auxiliary vector x
Ù

 as 
( )
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k kx D L x D U x D b
+Ù

+- - -= - - +  (2)                                      
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Substituting (2) in (3), we get ( ) ( )1
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Equation (3), can alternatively be written as 
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This equation describes the SOR method in its error format. When 1w = , The above 

equation reduces to the Gauss-Seidal method. The quantity w  is called the relaxation parameter and 
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.   
 Consider the system of equations  

1 1 3 1 2 3 1 2 32 1 0 7;  1 1 1;  0 1 2 1.x x x x x x x x x- + = - + - = - + = By using SOR method, we have 

4.1006 5.1472 5.8281

2.9879 4.4569 4.8729

2.3361 2.7958 2.9606

B

é ù
ê ú= ê ú
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By using SOR method we get the approximate solution and the weight vector by decomposing the approximate 
solution which is given by:  

(0.4242505474,0.3493854095,0.2263640428).w =   

 
An Approach to Group Decision Making with Intuitionistic Fuzzy Information:         
Step: 1 Utilize the IFWAA operator, to derive the individual overall preference IFS values. 

Step: 2 Utilize the IFHA operator to derive the collective overall IFS values of the alternatives .iA   

Step: 3 Calculate the correlation [21] between the collective overall preference values ir  
and the positive ideal 

value iriri , where (0,1)ir = (0,1)iri = . The correlation of , ( )A B IFSs xÎ  is given by a formula              
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å Step: 4 Calculate the correlation coefficient [21] from the 

following equation      ( ) ( ), , ( , ) ( , ) .ZL ZL ZL ZLA B C A B C A A C B Br = × Step: 5 Rank all the alternatives 

( ) 1,2,  ,iA i m= ¼ and select the best one in accordance with the correlation coefficient obtained in step 4.
 

 
Numerical Illustration: Let us suppose there is a risk investment company, which wants to invest a sum of 
money in the best option.  There is a panel with five possible alternatives to invest the money with the 
following four attributes: G1 is the risk analysis. G2 is the growth analysis. G3 is the social-political impact 
analysis. G4 is the environmental impact analysis. The weighting vector is obtained by normalizing the 
solution of Gauss-Jacobi and SOR methods are 

( )0.118510818,0.468475346,0.413013859 ,
Tg = ( )0.4242505474,0.3493854095,0.2263640428

T
w = under the 

above four attributes weights ( )0.2,0.1,0.3,0.4
T

w = and construct, respectively, the decision matrices as 

listed in the following matrices 
( )( ) ( )2 5*4 1,2,3
k
ijR r k= = As follows: 
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0.3,  0.4 0.2,  0.6
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By using algorithm, we get the correlation coefficients as: 
( ) ( )
( ) ( )
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1 1 1 1

1 1 1 1

1 1
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)1 1 0.0531)1 11 11 1

 

Rank all the alternatives ( ) .1, 2,3, 4,5A ii =  

1 2 3 4 5 .A A A A A> > > > Hence, the best alternative is 1A . 

 
Conclusion: In this paper, Gauss-Jacobi and SOR method are used to obtain the solution of linear algebraic 
equations and it is utilized to derive the decision maker weights in MAGDM problems under intuitionistic 
fuzzy sets.  In the process of determining weights, multi criteria are explicitly considered, the numerical 
solutions are decomposed, and the decision maker’s weights for attributes and corresponding decision making 
methods have also been proposed. The feasibility and effectiveness of the proposed method are illustrated 
using numerical examples.  
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