EDGE - VERTEX MIXED DOMINATION ON S-VALUED GRAPHS

S.Kiruthiga Deepa

Bharath Niketan College of Engineerin/Aundipatti - 625536/Tamilnadu/India

M.Chandramouleeswaran

Saiva Bhanu Kshatriya College/Aruppukottai - 626101/Tamilnadu/India

Abstract: Chandramouleeswaran et.al. [8] studied a semiring valued graphs and have proved several results on that. The notion of domination on vertex sets and edge sets in the S– valued graph G^S have been discussed in [3] and [5]. In our earlier paper [6], we studied the vertex - edge mixed domination on S– valued graphs. In this paper we study the concept of edge - vertex mixed domination on S– valued graphs.

Keywords: Semirings, Graphs, *S*–Valued Graphs, *Ev*– Weight *M*– Dominating Set.

AMS Classification: 05C25, 16Y60.

Introduction: The notion of semiring was first introduced by H.S.Vandiver[9], in the year 1934. Jonathan Golan [2], in his book mentioned the notion of *S*– valued graph. But nothing more has been dealt on this concept. Motivated by this, Chandramouleeswaran et.al.[8] studied the *S*– Valued graph in detail.

The theory of domination of graphs was first developed by Berge [1]. Several author's discussed the theory of domination and have arrived several bounds for the domination number of a graph. In our earlier paper [6], we studied the vertex - edge mixed domination on *S*-valued graphs. In this paper we study the concept of edge - vertex mixed domination on *S*-valued graphs.

Preliminaries: In this section, we recall some basic definitions that are needed for our work.

Definition: 2.1. [2] A semiring($S,+,\cdot$) is an algebraic system with a non-empty set S together with two binary operations + and \cdot such that

- 1. (S,+,o) is a monoid.
- 2. (S,\cdot) is a semigroup.
- 3. For all $a,b,c \in S$, $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(a+b) \cdot c = a \cdot c + b \cdot c$.
- 4. $o \cdot x = x \cdot o = o \ \forall \ x \in S$.

Definition: 2.2. [2] Let $(S,+,\cdot)$ be a semiring. A Canonical Pre-order in S defined as follows: for $a,b\in S$, $a\leqslant b$ if and only if, there exists an element $c\in S$ such that a+c=b.

Definition: 2.3. [1] A subset $F \subseteq E$ of edges in a graph G = (V,E) is called an edge dominating set in G if for every edge $e \in E$ –F there exist an edge $f \in F$ such that e and f have a vertex in common.

Definition: 2.4. [1] A subset $M \subseteq E$ is an Independent edge set of G if $f, g \in M$, $N(f) \cap \{g\} = \varphi$.

Definition: 2.5. [1] A subset $M \subseteq E$ is an Independent edge dominating set of G if M is both an independent edge set and a dominating edge set.

Definition: 2.6.[8] Let $G = (V, E \subset V \times V)$ be a given graph with $V, E \neq \phi$. For any semiring $(S, +, \cdot)$, a semiring-valued graph (or a S-valued graph), G^S , is defined to be the graph $G^S = (V, E, \sigma, \psi)$ where $\sigma: V \to S$ and $\psi: E \to S$ are functions defined as follows:

$$\psi(x,y) = \begin{cases} \min \left\{ \sigma(x), \sigma(y) \right\} & \text{if } \sigma(x) \leq \sigma(y) \text{ or } \sigma(y) \leq \sigma(x) \\ 0 & \text{otherwise} \end{cases}$$

for every unordered pair (x,y) of $E \subset V \times V$. We call σ , a S-vertex set and ψ , a S-edge set of G^S .

Definition: 2.7. [4] A S-valued graph $G^S = (V, E, \sigma, \psi)$ is said to be a S-Star(S-Wheel) if its underlying graph G is a Star(Wheel) along with S-values.

Definition: 2.8. [7] Let $G^S = (V, E, \sigma, \psi)$ be a S-valued graph. Let $e \in E$. The open neighbourhood of e, denoted by $N_S(e)$, is defined to be the set $N_S(e) = \{(e_i, \psi(e_i)) \mid e \text{ and } e_i \in E \text{ are adjacent}\}$ The closed neighbourhood of e, denoted by $N_S[e]$, is defined to be the set $N_S[e] = N_S(e) \cup (e, \psi(e))$

Definition: 2.9. [5] Let $G^S = (V, E, \sigma, \psi)$ be a S-valued graph. A subset $M \subseteq E$ is an independent edge set of G^S if f, $g \in M$ such that $N_S(f) \cap (g, \psi(g)) = \varphi$.

Definition: 2.10. [5] Let $G^S = (V, E, \sigma, \psi)$ be a S-valued graph. A subset $M \subseteq E$ is said to be a minimal independent edge set if

- 1. M is an independent edge set.
- ${\bf 2.}\ \ No\ proper\ subset\ of\ M\ is\ an\ independent\ edge\ set.$

Definition: 2.11. [5] Let $G^S = (V, E, \sigma, \psi)$ be a S-valued graph. A subset $M \subseteq E$ is said to be a maximal independent edge set if

- 1. M is an independent edge set.
- 2. If there is no subset M' of E such that $M \subset M' \subset E$ and M' is an independent edge set.

Definition: 2.12. [6] Consider the S-valued graph $G^S = (V, E, \sigma, \psi)$. A vertex $v \in V$ is said to be a ve-weight m-dominating vertex of an edge e, if ψ (e) $\leq \sigma(v) \forall e \in \langle N_S[e] \rangle$

Definition: 2.13. [6] Consider the S-valued graph $G^S = (V, E, \sigma, \psi)$. Let $D \subseteq V$. If every edge of G^S is weight m-dominated by any vertex in D, then D is said to be a ve-weight m-dominating set.

Edge - Vertex Mixed Domination on *S***-Valued Graphs:** In this section, we introduce the notion of edge - vertex mixed domination in *S*-valued graph, analogous to the notion in crisp graph theory, and prove some simple results.

Definition: 3.1. Consider the S-valued graph $G^S = (V, E, \sigma, \psi)$. Let $e \in E$, by definition $N_S[e] = \{(f, \psi(f)), where e \text{ and } f \text{ are adjacent}\} \cup \{(e, \psi(e))\}$. The induced subgraph of $N_S[e]$, denoted by $\langle N_S[e] \rangle$ is defined as $\langle N_S[e] \rangle = (P \times S, N_S[e])$, where $P = \{v/v \text{ is an end point of } e \in N_S[e]\}$

Example: 3.2. Let $(S = \{0, a, b, c\}, +, \cdot)$ be a semiring with the following Cayley Tables:

+	О	a	b	С
o	О	a	b	С
a	a	a	b	С
b	b	b	b	b
С	С	С	b	С

	o	a	b	С
o	o	o	o	o
a	o	o	a	o
b	О	a	b	С
С	О	0	С	С

Let be a canonical pre-order in *S*, given by

$$o \preceq o, o \preceq a, o \preceq b, o \preceq c, a \preceq a, a \preceq b, a \preceq c, b \preceq b, c \preceq b, c \preceq c$$

Consider the *S*- valued graph $G^S = (V, E, \sigma, \psi)$ and $\langle N_S[e_1] \rangle = (\{(v_v b), (v_2 b), (v_3 b), (v_6 a)\}, \{(e_v b), (e_2 b), (e_7 a)\})$

Definition: 3.3. Consider the S-valued graph $G^S = (V, E, \sigma, \psi)$. An edge $e \in E$ is said to be a ev-weight m-dominating edge of a vertex v, if $\sigma(v) \leq \psi(e)$, $\forall v \in \langle N_s[e] \rangle$.

In example 3.2, the edge e_1 is a ev- weight m- dominating edge of the vertices $v_1v_2v_3$ and v_6 .

Definition: 3.4. Consider the S-valued graph $G^S = (V, E, \sigma, \psi)$. Let $T \subseteq E$. If every vertex of G^S is weight m-dominated by any edge in T, then T is said to be a ev-weight m-dominating set. In example 3.2, $T = \{e_v e_s\}$ is a ev- weight m- dominating set.

Definition: 3.5. Consider the S-valued graph $G^S = (V, E, \sigma, \psi)$. A subset $T \subseteq E$ is said to be a minimal ev-weight m-dominating set, if

- 1. T is a ev-weight m-dominating set.
- 2. No proper subset of T is a ev-weight m-dominating set.

Example: 3.6. Let $(S = \{o, a, b, c\}, +, \cdot)$ be a semiring with the canonical preorder given in example 3.2 Consider the S- valued graph $G^S = (V, E, \sigma, \psi)$:

Clearly $T_1 = \{e_{\nu}e_{2\nu}e_{3\nu}e_{5\nu}e_{6\nu}e_{10}\}$, $T_2 = \{e_{\nu}e_3\}$, $T_3 = \{e_{\nu}e_5\}$, $T_4 = \{e_{\nu}e_6\}$,

 $T_5 = \{e_{\nu}e_5\}, T_6 = \{e_{\nu}e_5\}, T_7 = \{e_{\nu}e_{\nu}e_5\}, T_8 = \{e_{\nu}e_{\nu}e_5\}, T_9 = \{e_{\nu}e_{\nu}e_5\}, T_{10} = \{e_{\nu}e_{\nu}e_{\nu}e_{10}\}...$ are all ev- weight m-dominating sets.

 $T_2 = \{e_{\nu}e_3\}, T_3 = \{e_{\nu}e_5\}, T_4 = \{e_{\nu}e_5\}, T_5 = \{e_{\nu}e_5\}, T_6 = \{e_3,e_5\}, \text{ are all minimal } ev\text{- weight } m\text{- dominating sets.}$ From the above example, we can observe that a minimal ev- weight ev- weight ev- dominating set in a ev-valued graph ev- need not be unique; however the cardinality of all the sets is the same.

Definition: 3.7. Consider the S-valued graph $G^S = (V, E, \sigma, \psi)$. A subset $T \subseteq E$ is said to be a maximal ev-weight m-dominating set, if

- 1. T is a ev-weight m-dominating set.
- 2. there is no ev-weight m-dominating set $T' \subset E$ such that $T \subset T' \subset E$.

In example 3.6, $T_1 = \{e_{\nu}e_{\nu}e_{3}e_{5}, e_{9}, e_{10}\}$ is a maximal ev- weight m- dominating set.

while observing example 3.2, we conclude that a maximal ev – weight m-dominating set need not be unique.

Definition: 3.8. Consider the S-valued graph $G^S = (V, E, \sigma, \psi).A$ subset $T \subseteq E$ is said to be a ev-weight m-dominating independent set, if

- 1. T is a ev-weight m-dominating set.
- 2. If e, $f \in T$ then $NS(e) \cap (f, \psi(f)) = \phi$..

In example 3.2, $T = \{e_{\nu}e_5\}$ is a ev- weight m- dominating set. Also $N_S(e_1) \cap \{(e_5,b)\} = \varphi$. Hence $T = \{e_{\nu}e_5\}$ is a ev- weight m- dominating independent set.

Definition: 3.9. Consider the S-valued graph $G^S = (V, E, \sigma, \psi)$. Let $T \subseteq E$ be a weight dominating edge set of G^S . An edge $e \in T$ is said to be an S -isolate edge if $N_S(e) \subseteq (E - T) \times S$.

In example 3.2, $T = \{e_{\nu}e_5\}$, here the edges e_1 and e_5 are the isolate edges, since $N_S(e_1) = \{(e_{\nu}b), (e_{\gamma}a)\} \subseteq (E-T) \times S$, and $N_S(e_5) = \{(e_{\nu}b), (e_{\nu}c), (e_{\phi}c), (e_{\phi}c)\} \subseteq (E-T) \times S$.

Theorem: 3.10. The minimal ev-weight m-dominating set of a S-Star will be an edge with maximum weight. **Proof:** Let G^S be a S-Star.

Let $e_1 \in G^S$ be an edge with maximum weight.

Then $v_i \in \langle N_S[e_1] \rangle$, $\forall v_i \in G^S$.

Also $\psi(e_1) \succeq \sigma(v_i), \ \forall v_i \in G^S$

 \therefore The edge e_1 will weight m-dominate all the vertices of G^S .

Hence the minimal ev-weight m-dominating set of G^S is $\{e_i\}$.

Analogously we can prove the following theorems.

Theorem: 3.11.

- 1. The minimal ev-weight m-dominating set of a complete graph will be an edge with maximum weight.
- 2. The minimal ve-weight m-dominating set of a S-Wheel will be an edge with maximum weight, if the edge is a spoke of the S-Wheel.

Remark: 3.12. The minimal ve- weight m- dominating set of aS-Wheel will not be an edge with maximum weight, if the edge is not a spoke of the S-Wheel.

Example: 3.13. Let $(S = \{o, a, b, c\}, +, \cdot)$ be a semiring with the canonical preorder given in example 3.2 Consider the S- valued graph $G^S = (V, E, \sigma, \psi)$:

Here the edge e_1 is a ev- weight m- dominating edge of the vertices $v_{\nu}v_{\nu}v_{\nu}v_{3}v_{5}$ and v_{6} . The vertex v_{4} is not weight m- dominated by the edge e_1 . Hence $\{e_1\}$ is not a minimal ve- weight m- dominating set, since e_1 is not a spoke of the S-Wheel.

Theorem: 3.14. A ev–weight m–dominating set T of a graph G^S is a minimal ev–weight m–dominating set of G^S iff every edge $e \in T$ satisfies at least one of the following properties:

- 1. there exist an edge $f \in E T$, such that $NS(f) \cap (T \times S) = \{(e, \psi(e))\}$
- 2. e is adjacent to no edge of T.

Proof: Let $e \in T$. Assume that e is adjacent to no edge of T, then $T - \{e\}$ cannot be a ev- weight m- dominating set. $\Rightarrow T$ is a minimal ev- weight m- dominating set.

On the other hand, if for any $e \in T$ there exist a $f \in E - T$ such that

 $N_S(f) \cap (T \times S) = \{(e, \psi(e))\}$

Then *f* is adjacent to $e \in T$ and no other edge of *T*.

In this case also, $T - \{e\}$ cannot be a ev- weight m- dominating set of G^S .

Hence *T* is a minimal weight dominating edge set.

Conversely, assume that T is a minimal ev— weight m— dominating set of G^S . Then for each $e \in T$, $T - \{e\}$ is not a ev— weight m— dominating set of G^S .

∴ there exist an edge, $f \in E - (T - \{e\})$ that is adjacent to no edge of $(T - \{e\})$.

If f = e, then e is adjacent to no edge of T.

If $f \neq e$, then T is a ev- weight m- dominating set and f $T \Rightarrow f$ is adjacent to at least one edge of T. However f is not adjacent to any edge of $T - \{e\}$.

 $\Rightarrow N_S(f) \cap T \times S = \{(e, \psi(e))\}.$

Theorem: 3.15. A subset $T \subseteq E$ of G^S is a ev-weight m-do \notin minating independent set iff T is a maximal independent edge set in G^S .

Proof: Clearly every maximal independent edge set T in G^S is a ev- weight m- dominating independent set.

Conversely, assume that T is a ev- weight m-dominating independent set. Then T is independent and every edge not in T is adjacent to an edge of T and therefore T is a maximal independent edge set in G^S .

Theorem: 3.16. Every maximal independent edge set of G^S is a minimal ev-weight m-dominating set.

Proof: Let T be a maximal independent edge set of G^S . Then by theorem 3.15, T is a ev-weight m-dominating set. Since T is independent, every edge of T is adjacent to no edge of T. Thus, every edge of T satisfies the second condition of theorem 3.14. Hence T is a minimal ev-weight m-dominating set in G^S .

Combining the above two theorems, we obtain the following theorem,

Theorem: 3.17. A subset $T \subseteq E$ of G^S is a ev-weight m-dominating independent set iff T is a minimal ev-weight m-dominating set.

Theorem: 3.18. Let G^S be a vertex regular S-valued graph. If $T \subseteq E$ of G^S is a minimal ev-weight m-dominating set without S-isolate edges then E –T is also a ev-weight m-dominating set of G^S .

Proof: Assume that $G^S = (V, E, \sigma, \psi)$ be a vertex regular S-valued graph.

Let $T \subseteq E$ be a minimal ev-weight m-dominating set.

Let $e \in T$, then by theorem 3.14,

1. there exist an edge $f \in E -T$, such that

 $NS(f) \cap (T \times S) = \{(e, \psi(e))\}\$

2. e is adjacent to no edge of T.

In the first case, e is adjacent to some edge in E –T.

In the second case, e is an S-isolate edge of the subgraph spanned by .

But e is not S-isolated in GS.

Hence e is adjacent to some edge of E –T.

Thus E –T is aev–weight m–dominating set of GS, whenever GS is vertex regular S–valued graph.

Remark: 3.19. In the above theorem, the vertex regularity of G^S is essential. That is, if the graph G^S is not vertex regular then the theorem fails as given by the following example.

In example 3.6, $T_2 = \{e_{12}e_{3}\}$, is a minimal ev- weight m- dominating set without S- isolate edges. And $E - T_2 = \{e_{22}e_{42}e_{52}e_{63}e_{72}e_{82}e_{62}e_{72}e_{83}e_{63}e_{72}\}$.

Since the edges of $E - T_2$ have minimum weight, $E - T_2$ is not a ev- weight m- dominating set.

References:

- 1. **Berge C** *Theory of Graphs and its Applications*, Methuen, London, (1962).
- 2. **Jonathan Golan** *Semirings and Their Applications*, Kluwer Academic Publishers, London.
- 3. **Jeyalakshmi.S** and Chandramouleeswaran.M: *Vertex domination on S-Valued graphs*,IOSR Journal of mathematics IOSR Journal of Mathematics. e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 12, Issue 5 Ver. IV, PP 08-12
- 4. **Jeyalakshmi.S**, **Rajkumar.M**, **and Chandramouleeswaran.M**: *Regularity on S–Graphs*, Global Journal of Pure and Applied Mathematics. ISSn 0973-1768 Volume 11, Number 5 (2015), pp. 2971-2978
- 5. **Kiruthiga Deepa.S.,MangalaLavanya.S and Chandramouleeswaran.M**: *Edge Domination on S-Valued Graphs*, Journal of Mathematical and Computational Science., 7 (2017), No. 1, 59-67 ISSN: 1927-5307.
- 6. **KiruthigaDeepa.S and Chandramouleeswaran.M**: *Vertex Edge Mixed Domination on S-Valued Graphs*, International Journal of Pure and Applied Mathematics (2017), Vol No.112, pp 139-147 ISSN: 1314-3395, doi: 10.12732/ijpam.v112i5.16
- 7. **MangalaLavanya.S, KiruthigaDeepa.S and chandramouleeswaran.M**: Degree Regularity on edges of S-valued graph, IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 12, Issue 5 Ver. VII (Sep. Oct.2016), PP 22-27.
- 8. **Rajkumar.M.,Jeyalakshmi.S and Chandramouleeswaran.M**: *Semiring-valued Graphs*, International Journal of Math. Sci. and Engg. Appls., Vol. 9 (III), 2015, 141 152.
- 9. **Vandiver. H.S**:Note on a simple type of algebra in which the cancellation law of addition does not hold, *Bull. Amer. Math. Soc.*, Vol 40, 1934, 916 -920.
