LATTICE CONSTRUCTION ON PRE A* -ALGEBRA

D. Kalyani

Lecturer in Mathematics/Government College for Women/Guntur - 522 001/A.P./India

B. Rami Reddy

Head of the Dept. of Mathematics/Hindu College/Guntur/AP/India

J.Venkateswara Rao

Professor of Mathematics/Mekelle University/Mekelle/Ethiopia

P.Nirmala Kumari

Lecturer in Mathematics/K.R.K. Degree College/Addanki/A.P./India

Abstract: This paper analyzes the notion of lattice structure on Pre A*-algebra. It has been derived the corresponding properties of the Pre A*-lattice L. Furthermore, identified a congruence relation θ_a on L and proved that the set of all congurences on L is a distributive Pre A*-Lattice. Also described an ideal on Pre A*-lattice L and shown that F(L) the set of all ideals of L is a distributive Pre A*-lattice under the set inclusion. Also introduced the notion of ideal congruence on Pre A*-lattice and derived its various significant properties.

Key Words: A*-Algebra, Pre-A*-Algebra, Boolean Algebra, Partially Ordered Set, Ada, Homomorphism.

AMS Subject Classification (2000): o6Eo5, o6Eo5, o6Eo9, o6Bio.

Introduction: The concept of lattice was thoroughly discussed by Birkoff G (1948). In a draft manuscript entitled "The Equational theory of Disjoint Alternatives", E. G. Manes (1989) introduced the concept of Ada (Algebra of disjoint alternatives) (A, \wedge , \vee , $(-)^{-}$, $(-)_{\pi}$, 0, 1, 2) which is however differs from the definition of the Ada of E. G. Manes (1993) later paper entitled "Adas and the equational theory of if-then-else". While the Ada of the earlier draft seems to be based on extending the If-Then-Else concept more on the basis of Boolean algebras and the later concept is based on C-algebras (A, \wedge , \vee , $(-)^{\sim}$) introduced by Fernando Guzman and Craig C. Squir (1990). P. Koteswara Rao (1994) first introduced the concept of A*-algebra (A, \wedge , \vee , $(-)^{\sim}$, $(-)_{\pi}$, 0, 1, 2) not only studied the equivalence with Ada, C-algebra, Ada's connection with 3-Ring, Stone type representation but also introduced the concept of A*-clone, the If-Then-Else structure over A*-algebra and Ideal of A*-algebra. Later Ramabhadra Sarma.I., Koteswara Rao.P (1996) made an account on the algebra of Disjoint Alternatives.

J.Venkateswara Rao (2000) introduced the concept Pre A*-algebra (A, Λ , V, $(-)^{\sim}$) analogous to C-algebra as a reduct of A*- algebra. Srinivasa Rao.K.(2009) contributed the structural compatibility of Pre A*-Algebra with Boolean algebra. Further A. Satyanarayana (2012) established the concept of Ideals, Semilattice structures and Ideal congruences on Pre A*-algebra. Boolean algebra depends on two element logic. C-algebra, Ada, A*-algebra and our Pre A*-algebra are regular extensions of Boolean logic to 3 truth values, where the third truth value stands for an undefined truth value. The Pre A*- algebra structure is denoted by (A, Λ , V, $(-)^{\sim}$) where A is non-empty set Λ , V, are binary operations and $(-)^{\sim}$ is a unary operation.

In this paper we identify for any subset L of a Pre A*-algebra, a Pre A*-lattice. We present various examples of Pre A*-lattices. We offer several properties of Pre A*-lattices. We define sub Pre A*-lattice, distributive Pre A*-lattices and homomorphism of Pre A*-lattices. We confer congruence relation θ_a on L and prove that the set of all congurences of the form θ_a forms a distributive Pre A*-Lattice. We also introduce the concept of Ideal, Ideal congruences on Pre A*-lattice and derived some important properties of these.

Preliminaries: In this section we concentrate on the algebraic structure of Pre A*-algebra and state some results which will be used in the later text.

Definition: The relation R on a set A is called a partial order on A when $R(\leq)$ is reflexive, anti-symmetric, and transitive. Under these conditions, the set A is called a partially ordered set or a poset. Frequently we write (A, R) or (A, \leq) to denote that A is partially ordered by the relation $R(\leq)$. Since the relation \leq on the set of real numbers is the prototype of a partial order it is common to write \leq to represent an arbitrary partial order can be described as follows:

- 1. For all $a \in A$, $a \le a$ (symmetry)
- 2. For all $a, b \in A$, $a \le b$, $b \le a$, then a = b(anti symmetry)
- 3. For all a, b, $c \in A$, $a \le b$ and $b \le c$, then $a \le c$ (transitivity)

Two elements a and b in A are said to be comparable under ≤ if $a \le b$ or $b \le a$; otherwise they are incomparable. If every pair of elements of A are comparable, then we say that the partially ordered set is totally ordered.

Definition: An algebra $(A, \land, \lor, (-)^{\sim})$ where A is a non-empty set with $1, \land, \lor$ are binary operations and

- (−) [~] is a unary operation satisfying
- (a) $x^{\sim} = x$ $\forall x \in A$
- (b) $x \wedge x = x$, $\forall x \in A$
- (c) $x \wedge y = y \wedge x$, $\forall x, y \in A$
- (d) $(x \wedge y)^{\sim} = x^{\sim} \vee y^{\sim} \quad \forall x, y \in A$
- (e) $x \land (y \land z) = (x \land y) \land z$, $\forall x, y, z \in A$
- (f) $x \land (y \lor z) = (x \land y) \lor (x \land z), \forall x, y, z \in A$
- (g) $x \wedge y = x \wedge (x \sim y)$, $\forall x, y \in A$ is called a Pre A*-algebra.

Example: $3 = \{0, 1, 2\}$ with operations $\land, \lor, (-)$ defined below is a Pre A*-algebra.

^	О	1	2	V	О	1	2		x	x~
О	О	0	2	0	О	1	2	-	0	1
1	О	1	2	1	1	1	2		1	О
2	2	2	2	2	2	2	2		2	2

Note: The elements 0, 1, 2 in the above example satisfy the following laws:

(a) $2^{-} = 2$

- (b) $1 \wedge x = x$ for all $x \in 3$
- (c) $o \lor x = x$ for all $x \in 3$
- (d) $2 \land x = 2 \lor x = 2$ for all $x \in 3$.

Example: $2 = \{0, 1\}$ with operations $\land, \lor, (-)^{\sim}$ defined below is a Pre A*-algebra.

\wedge	0	1	V	О	1	X	x~
О	0	0	О	О	1	О	1
1	О	1	1	1	1	1	О

Note:

- (i) $(2, \vee, \wedge, (-))$ is a Boolean algebra. So every Boolean algebra is a Pre A* algebra.
- (ii) The identities 1.2(a) and 1.2(d) imply that the varieties of Pre A*-algebras satisfies all the dual statements of 1.2(b) to 1.2(g).

Definition: Let A be a Pre A*-algebra. An element $x \in A$ is called a central element of A if $x \vee x = 1$ and the set $\{x \in A/x \lor x^{=1}\}\$ of all central elements of A is called the centre of A and it is denoted by B (A).

Theorem: [Satyanarayana.A, (2012)]: Let A be a Pre A*-algebra with 1, then B (A) is a Boolean algebra with the induced operations $\land, \lor, (-)$

Lemma: [Satyanarayana.A, (2012)]: Every Pre A*-algebra with 1 satisfies the following laws

- (a) $x \lor 1 = x \lor x^{\sim}$
- (b) $x \wedge 0 = x \wedge x$

Lemma: [Satyanarayana.A, (2012)]: Every Pre A*-algebra with 1 satisfies the following laws.

- (a) $x \wedge (x \vee x) = x \vee (x \wedge x) = x$ (b) $(x \vee x) \wedge y = (x \wedge y) \vee (x \wedge y)$

(c)
$$(x \lor y) \land z = (x \land z) \lor (x \land y \land z)$$

Lattice Structure on Pre A*-algebra: In this section we define (for any subset L of a Pre A*-algebra) a Pre A*-lattice (L, \land , \lor). We give some examples of Pre A*-lattices. We give some properties of Pre A*-lattices. We define the congruence $\theta_a = \{(x,y) \in L \times L \mid a \land x = a \land y\}$ for any $a \in L$ and studied their properties. We also introduce the concept of Ideal, Ideal congruences on Pre A*-lattice and derived some important properties of these.

Definition: Let A be a Pre A*-algebra. A non-empty subset L of a Pre A*-algebra A in which for each pair of elements $a \in A$, $b \in B(A)$ in L has greatest lower bound $a \lor b$ exists in L. Such a defined set L in Pre A*-algebra is said to be Pre A*-lattice.

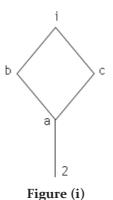
Now we give another type of definition other than that in 2.1. Definition by means of equations.

Definition: Let A be a Pre A*-algebra. A non-empty subset L of a Pre A*-algebra A, equipped with two binary operations meet (\land) and join (\lor) which assign to every pair a \in A, b \in B(A) of the elements of L, uniquely an element

- $a \wedge b$ as well as element $a \vee b$ in L in such a way that the following axioms holds.
- (i) $a \wedge (b \wedge c) = (a \wedge b) \wedge c, \forall a, b, c \in L (associative)$
- (ii) $a \wedge b = b \wedge a$, $\forall a, b \in L$ (commutative);
- (iii) $a \land (a \lor b) = a, \forall a, b \in L \text{ (absorption law)}$
- **2.1. Note:** The above axioms (i), (ii), (iii) holds with respect to \square also.

2.1. Example:

- 1. Let A be a Pre A*-algebra and $2 = \{0,1\}$ is a subset of A then $2 = \{0,1\}$ is a Pre A*-lattice.
- 2. $3 = \{0, 1, 2\}$ is a subset of a Pre A*-algebra then $3 = \{0, 1, 2\}$ is a Pre A*-lattice.
- 3. Fig (i) is an example of Pre A*-lattice.



4. Example of a poset which is shown in Fig (ii) is not a Pre A*-lattice:

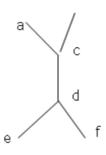


Figure (ii)

Definition: Let L_1 and L_2 be a two Pre A*-lattices. A mapping $f: L_1 \to L_2$ is called a homomorphism if (i) $f(a \land b) = f(a) \land f(b)$ (ii) $f(a \lor b) = f(a) \lor f(b)$

The homomorphism $f: L_1 \to L_2$ is onto, then f is called epimorphism.

The homomorphism $f: L_1 \to L_2$ is one-one then f is called monomorphism

The homomorphism $f: L_1 \to L_2$ is one-one and onto then f is called an isomorphism, and L_1, L_2 are isomorphic, denoted in symbol $L_1 \cong L_2$.

Theorem: Let A be a Pre A*-algebra. L is a subset of A Then (L, \wedge, \vee) is a Pre A*-lattice.

Proof: Since A is a Pre A*-algebra L is a subset of A.

We have $a \land (b \land c) = (a \land b) \land c, \forall a, b, c \in A by 1.2 (e)$

 $a \wedge b = b \wedge a$, $\forall a, b \in A$ by 1.2 (c) and $a \wedge a = a$, $\forall a \in A$ by 1.2 (b)

Therefore $a \land (b \land c) = (a \land b) \land c, \forall a, b, c \in L, a \land b = b \land a, \forall a, b \in L$

And $a \wedge a = a$, $\forall a \in L$. Hence (L, \wedge) is a semilattice.

Similarly we can prove (L, \vee) is a semilattice. And since in a Pre A*-algebra,

 $a \wedge (a \vee b) = a$, $\forall \ a \in A, \ b \in B(A)$. So, $a \wedge (a \vee b) = a$, $\forall \ a, \ b \in L$ (absorption law). Hence (L, \wedge, \vee) is a Pre A*-lattice.

Definition: Let A be a Pre A*-algebra suppose L_1 be a subset of a Pre A*-lattice L. We say L_1 is a sub Pre A*-lattice of L if L_1 itself is a Pre A*-lattice (with respect to the operations of L).

Example: $3 = \{0, 1, 2\}$ is a Pre A*-lattice then $2 = \{0, 1\}$ which is a subset of $3 = \{0, 1, 2\}$ is a sub Pre A*-lattice.

Definition: Let A be a Pre A*-algebra and L is subset of A. Then a Pre A*-lattice (L, \land , \lor) is said to be distributive Pre A*-lattice if any elements a, b, c in L we have the distributive law.

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c), \forall a, b, c \in L$$

Example: The chain shown in the Fig (iii) of section 2 is a distributive Pre A*-lattice.

Theorem: Let A be a Pre A*-algebra and L is a subset of A which is Pre A*-lattice. Then L becomes a distributive Pre A*-Lattice.

Proof: Since A is a Pre A*-algebra, and L is a subset of A which is clearly a Pre A*-lattice and since distributive law holds in a Pre A*-algebra,

 $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c), \forall a, b, c \in L.$ Hence L becomes a distributive Pre A*-lattice.

Definition: Let A be a Pre A*-algebra and L is a distributive Pre A*-Lattice. Define for any $a \in L$, $\theta_a = \{(x, y) \in L \times L / a \land x = a \land y\}$

Lemma: Let L be a distributive Pre A*-Lattice. Then $\theta_a = \{(x,y) \in L \times L \mid a \land x = a \land y\}$ is a congruence relation on L.

Proof: Since $a \wedge x = a \wedge x$ then $(x, x) \in \theta_a$, the relation is reflexive.

Let
$$(x, y) \in \theta_a$$
 then $a \wedge x = a \wedge y$

$$\Rightarrow a \land y = a \land x$$

$$\Rightarrow$$
 $(y, x) \in \theta_a$, the relation is symmetric

Let $(x, y) \in \theta_a$ and $(y, z) \in \theta_a$ then $a \land x = a \land y$ and $a \land y = a \land z$

$$\Rightarrow a \land x = a \land z$$

$$\Rightarrow$$
 (x , z) $\in \theta_a$, the relation is transitive.

Hence the relation θ_a is equivalence relation.

Let $x,y,z,t\in L$ such that $(x\,,y\,)\in\theta_a$ and $(z\,,t\,)\in\theta_a$ then $a\wedge x=a\wedge y$, $a\wedge z=a\wedge t$

Now
$$a \wedge (x \vee z) = (a \wedge x) \vee (a \wedge z)$$

$$=(a \wedge y) \vee (a \wedge t)$$

$$= a \wedge (v \vee t)$$

This shows that $(x \lor z, y \lor t) \in \theta_a$

Hence θ_a is closed under \vee .

Also
$$a \wedge (x \wedge z) = (a \wedge x) \wedge (a \wedge z)$$

$$=(a \wedge y) \wedge (a \wedge t)$$

$$= a \wedge (v \wedge t)$$

This shows that $(x \wedge z, y \wedge t) \in \theta_a$

Hence θ_a is closed under \wedge .

Therefore θ_a is a congruence relation on L .

Theorem: Let L be a distributive Pre A*-Lattice. Define $X = \{\theta_a \mid a \in L\}$ then (X,\subseteq) is a distributive Pre A*-Lattice.

Proof: Clearly $\theta_a \subseteq \theta_a$ for all $\theta_a \in X$, shows \subseteq is reflexive.

Let $\theta_a \subseteq \theta_b$ and $\theta_b \subseteq \theta_a$ implies that $\theta_a = \theta_b$. This \subseteq is anti-symmetric.

Let $\theta_a \subseteq \theta_b$ and $\theta_b \subseteq \theta_c$ then $\theta_a \subseteq \theta_c$, shows that \subseteq is transitive.

Hence (X,\subseteq) is a poset.

First we show that $\theta_a \cap \theta_b = \theta_{a \vee b}$

Let $(x, y) \in \theta_a \cap \theta_b$ then $a \wedge x = a \wedge y$ and $b \wedge x = b \wedge y$

Now
$$(a \lor b) \land x = (a \land x) \lor (b \land x)$$

= $(a \land y) \lor (b \land y)$
= $(a \lor b) \land y$

This implies that $(x, y) \in \theta_{a \lor b}$

This shows that $\theta_a \cap \theta_b \subseteq \theta_{a \vee b}$.

On the other hand let $(x, y) \in \theta_{a \lor b}$, then $(a \lor b) \land x = (a \lor b) \land y$.

Now $a \wedge x = (a \wedge (a \vee b)) \wedge x$ (by absorption law)

$$= a \wedge ((a \vee b) \wedge x)$$

$$= a \wedge ((a \vee b) \wedge y)$$

$$= (a \wedge (a \vee b)) \wedge y$$

$$= a \wedge y$$

This implies that $(x, y) \in \theta_a$, hence $\theta_{a \lor b} \subseteq \theta_a$

Similarly we can prove that $\theta_{a\vee b} \subseteq \theta_b$

This implies that $\theta_{a \lor b} \subseteq \theta_a \cap \theta_b$

Hence $\theta_a \cap \theta_b = \theta_{a \lor b}$

Let $(r,s) \in \theta_a$ then $a \wedge r = a \wedge s \Rightarrow a \wedge b \wedge r = a \wedge b \wedge s \Rightarrow (r,s) \in \theta_{a \wedge b}$.

Hence $\theta_a \subseteq \theta_{a \wedge b}$. Similarly $\theta_b \subseteq \theta_{a \wedge b}$.

Thus $\theta_{a \wedge b}$ is an upper bound of $\{\theta_a, \theta_b\}$.

Let θ_c is an upper bound of $\{\theta_a, \theta_b\}$.

Let
$$(x, y) \in \theta_{a \land b}$$
 then $a \land b \land x = a \land b \land y \Rightarrow (b \land x, b \land y) \in \theta_a \subseteq \theta_a$

$$\Rightarrow c \land b \land x = c \land b \land y \Rightarrow b \land c \land x = b \land c \land y \Rightarrow (c \land x, c \land y) \in \theta_b \subseteq \theta_c$$

$$\Rightarrow c \land c \land x = c \land c \land y \Rightarrow c \land x = c \land y \Rightarrow (x, y) \in \theta_c$$

Hence $\theta_{a \wedge b} \subseteq \theta_c$.

Therefore Sup{ θ_a , θ_b } = $\theta_{a \wedge b}$ i.e., $\theta_a \vee \theta_b = \theta_{a \vee b}$.

Hence *X* is a Pre A*-Lattice.

Since $a \land (b \lor c) = (a \land b) \lor (a \land c), \forall a, b, c \in L$ we have X is a distributive Pre A*-Lattice.

Definition: A nonempty subset I of a distributive Pre A*-Lattice L is said to be an ideal of L if the following hold.

(i) $a,b \in I \Longrightarrow a \lor b \in I$

(ii) $a \in I \Longrightarrow x \land a \in I$ for each $x \in L$

Theorem: Let L be a distributive Pre A*-Lattice. Then F(L) the set of all ideals of L is a distributive Pre A*-Lattice under the set inclusion.

Proof: Let I, $J \in F(L)$

Clearly I \bigcap I is an ideal of L, and I \bigcap I = Inf{I, I} in the poset (F(L), \subset).

/

Let H = {
$$\bigvee_{i=1}^{n} x_i / x_i \in I \cup J$$
, n is a positive integer }

Let
$$H = \{ \bigvee_{i=1}^{n} x_i / x_i \in I \bigcup J, n \text{ is a positive integer } \}$$

Let $x, y \in H$ implies that $x = \bigvee_{i=1}^{n} x_i, y = \bigvee_{i=1}^{n} y_i \text{ and hence } x \lor y = \bigvee_{k=1}^{n} t_k$

(each $t_i \in I \cup J$)

Let $a \in L$ and $x \in H$.

Then
$$a \wedge x = a \wedge (\bigvee_{i=1}^{n} x_i) = \bigvee_{i=1}^{n} (a \wedge x_i)$$

Now a $\land x_i \in I \cup J$ (since if $x_i \in I$ then a $\land x_i \in I$ and if $x_i \in J$ then a $\land x_i \in J$)

Hence a $\land x \in H$.

Therefore H is an ideal of L.

Clearly I, J are subsets of H.

Let K be any ideal of L such that $I \subseteq K$, $J \subseteq K$.

Now let
$$x \in H \Rightarrow x = \bigvee_{i=1}^{n} x_i \Rightarrow x \in K(\text{ since } I, J \subseteq K \text{ and } K \text{ is an ideal})$$

Hence $H \subseteq K$

Therefore H is the smallest ideal containing I, J.

Therefore Sup{I, J} = H.i.e.,
$$I \lor J = \{ \bigvee_{i=1}^{n} x_i / x_i \in I \bigcup J, n \text{ is a positive integer } \}$$

Hence F(L) is a lattice under the set inclusion.

Let I, J, $K \in F(L)$

Clearly
$$(I \cap J) \vee (I \cap K) \subseteq I \cap (J \vee K)$$

Let
$$t \in I \cap (J \vee K)$$

Then
$$t = \bigvee_{i=1}^{n} x_i$$
, where $x_i \in J \bigcup K$

Then
$$t = \bigvee_{i=1}^{n} x_i$$
, where $x_i \in J \bigcup K$
Now $t = t \land t = t \land (\bigvee_{i=1}^{n} x_i) = \bigvee_{i=1}^{n} (t \land x_i)$

Now $t \wedge x_i \in I \cap J$ or $I \cap K$

Therefore $t \in (I \cap J) \vee (I \cap K)$

Hence
$$I \cap (J \vee K) \subseteq (I \cap J) \vee (I \cap K)$$

Thus
$$I \cap (J \vee K) = (I \cap J) \vee (I \cap K)$$

Therefore F(L) is a distributive Pre A*-Lattice.

Definition: For any ideal I of a Pre A*-Lattice L we define

$$\theta_I = \{(x, y) \mid a \land x = a \land y \text{, for some } a \in I\}. \text{ That is } \theta_I = \bigcup_{a \in I} \theta_a$$

Theorem: θ_L is a congruence on a Pre A*-Lattice L for any ideal I of L.

Proof: We know that the union of a class of congruences on L is again a congruence on L if the given class is directed above, in the sense that, for any two members θ_1 and θ_2 in that class there exist a member θ in the class containing both θ_1 and θ_2 .

Now consider $C = \{ \theta_a / a \in I \}$

Since each θ_a is congruence on L, C is a class of congruence on L. Also for any a, b \in I we have a \vee b \in I and θ_a $\vee \theta_b = \theta_{a \vee b} \in C$

Therefore C is a directed above class of congruences and $\bigcup_{i=1}^{n} \theta_{i}$ (= θ_{i}) is a congruence on L.

Theorem: For any ideals I and J of a Pre A*-Lattice L the following hold.

(1)
$$I \subseteq J \Rightarrow \theta_I \subseteq \theta_J$$

(2)
$$\theta_{I} \cap \theta_{J} = \theta_{I \cap J}$$

(3) $\theta_{I} \vee \theta_{J} = \theta_{I \vee J}$
Proof: Let I and J are
(1) Suppose that $I \subseteq$
Let $a \in I \implies a \in J$
Let $(x, y) \in \theta_{I} \implies a$

Proof: Let I and J are ideals of a Pre A*-Lattice L.

(1) Suppose that $I \subseteq J$.

Let $(x, y) \in \theta_1 \implies a \land x = a \land y$ for some $a \in I$ \Rightarrow a \land x = a \land y for some a \in J \Rightarrow (x, y) $\in \theta_1$

Therefore $\theta_{I} \subseteq \theta_{J}$.

(2) Since I \bigcap J \subseteq I and I \bigcap J \subseteq J then by (1) we get $\theta_{I \cap J} \subseteq \theta_1$ and $\theta_{I \cap J} \subseteq \theta_J$

Hence $\theta_{I \cap J} \subseteq \theta_I \cap \theta_J$

Let $(x, y) \in \theta_1 \cap \theta_1 \Rightarrow (x, y) \in \theta_1$ and $(x, y) \in \theta_1$ \Rightarrow a \land x = a \land y and b \land x = b \land y, where a \in I, b \in J

Now $a \land b \in I \cap J$ and also $(a \land b) \land x = a \land (b \land x)$ $= a \wedge (b \wedge y)$ $= (a \wedge b) \wedge y$

Therefore $(x, y) \in \theta_{I \cap I}$

Hence $\theta_1 \cap \theta_1 \subseteq \theta_{I \cap I}$

Therefore $\theta_1 \cap \theta_1 = \theta_{I \cap I}$

(3) Since $I \subseteq I \vee J$ and $J \subseteq I \vee J$ then by (1) we get $\theta_I \subseteq \theta_{I \vee J}$, $\theta_J \subseteq \theta_{I \vee J}$ and hence

$$\theta_{I} \vee \theta_{J} \subseteq \theta_{I \vee J}$$

Let $(x, y) \in \theta_z$ where $z \in I \vee J$

$$\Rightarrow z = \bigvee_{i=1}^{n} x_{i} \text{ for some } x_{i} \in I \lor J \text{ and } (x, y) \in \theta \underset{\underset{i=1}{}}{\overset{n}{=}} \bigvee_{i=1}^{n} \theta_{x_{i}} \text{ (since } \theta_{a \lor b} = \theta_{a} \lor \theta_{b})$$

$$\Rightarrow (x, y) \in \bigvee_{i=1}^{n} \theta_{x_i} \subseteq \theta_1 \vee \theta_J \text{ (since each } x_i \in I \text{ or } J)$$

$$\Rightarrow (x, y) \in \theta_1 \vee \theta_J$$

$$\Rightarrow \theta_{I \vee J} \subseteq \theta_1 \vee \theta_J$$

Therefore $\theta_{I} \vee \theta_{J} = \theta_{I \vee J}$.

Let us recall that the set Con(L) of all congruences on any algebra L is an algebraic lattice under the inclusion ordering in which the g.l.b and l.u.b of any subset \check{C} of Con(L) are given by g.l.b $\check{C} = \bigcap_{\theta \in \check{C}} \theta$ and l.u.b $\check{C} = \bigcup \{\theta_1 \in \check{C} \in \mathcal{C} \in \mathcal{$

$$o \theta_2 o \dots o \theta_n / \theta_i \in \check{C}$$
.

Now we have the following.

Theorem: Let F(L) be the lattice of all ideals a Pre A*-Lattice L. Then

 $I \rightarrow \theta_1$ is homomorphism of the lattice F(L) into the lattice Con(L) of all congruences on L.

Proof: From 2.6. Theorem (2 and 3) it follows that $I \to \theta_1$ is lattice homomorphism of F(L) into the lattice Con(L).

Lemma: Let L be a distributive Pre A*-Lattice. Then $L_a = \{ a \land x / x \in L \}$ is a sub algebra of L and it is a distributive lattice.

Proof:

Let $a \wedge x$, $a \wedge y \in L_a$

Then $a \wedge (x \wedge y) = (a \wedge x) \wedge (a \wedge y) \in L_a$

Hence L_a is closed under \wedge

Also $a \wedge (x \vee y) = (a \wedge x) \vee (a \wedge y) \in L_a$

Hence L_a is closed under \vee

Therefore L_a is a sub algebra of L. Since L is a distributive Pre A*-Lattice we have L_a is a distributive lattice.

Theorem: Let L be a distributive Pre A*-Lattice. Then the map $f_a \colon L \to L_a$ defined by $f_a(x) = a \wedge x$ is a homomorphism and $L / \theta_a \cong L_a$.

Proof: Let $x, y \in L$. Then

$$f_a(x \lor y) = a \land (x \lor y) = (a \land x) \lor (a \land y) = f_a(x) \lor f_a(y)$$
 and

$$f_a(x \wedge y) = a \wedge (x \wedge y) = (a \wedge x) \wedge (a \wedge y) = f_a(x) \wedge f_a(y)$$

Therefore f_a is homomorphism.

For
$$a \wedge x \in L_a$$
, $f_a(x) = a \wedge x$

Hence f_a is onto.

Now ker
$$f_a = \{(x, y) / f_a(x) = f_a(y)\} = \{(x, y) / a \land x = a \land y\} = \theta_a$$

By fundamental theorem of homomorphism L / $\ker f_a \cong L_a$, which imply L / $\theta_a \cong L_a$.

Conclusion: This manuscript acknowledged the construction of lattice structure on Pre A*-algebra and such a defined lattice structure on Pre A*-algebra was referred as Pre A*-lattice L. Further various properties of the Pre A*-lattice were obtained. Also attained to construct the congruence $\theta_a = \{(x,y) \in L \times L \mid a \wedge x = a \wedge y\}$ for any $a \in L$ and $X = \{\theta_a \mid a \in L\}$ then (X, \subseteq) is a distributive Pre A*-Lattice. Also it has been defined an ideal on Pre A*-lattice L and proved that $\Gamma(L)$, the set of all ideals of L is a distributive Pre A*-lattice under the set inclusion. For any ideal I of a Pre A*-Lattice L it is defined $\theta_I = \{(x,y) \mid a \wedge x = a \wedge y \text{ , for some } a \in I\}$ is a congruence on a Pre A*-Lattice and confirmed that $I \to \theta_I$ is homomorphism of the lattice $\Gamma(L)$ into the lattice $\Gamma(L)$ of all congruences on $\Gamma(L)$ in a homomorphism and $\Gamma(L)$ and $\Gamma(L)$ defined by $\Gamma(L)$ and the map $\Gamma(L)$ defined by $\Gamma(L)$ and $\Gamma(L)$ is a homomorphism and $\Gamma(L)$ and $\Gamma(L)$ defined by $\Gamma(L)$ and the map $\Gamma(L)$ defined by $\Gamma(L)$ and $\Gamma(L)$ and $\Gamma(L)$ defined by $\Gamma(L)$ and $\Gamma(L)$ and $\Gamma(L)$ defined by $\Gamma(L)$ and $\Gamma(L)$ are $\Gamma(L)$ and $\Gamma(L)$ defined by $\Gamma(L)$ defined by $\Gamma(L)$ and $\Gamma(L)$ are $\Gamma(L)$ and $\Gamma(L)$ defined by $\Gamma(L)$ defined by $\Gamma(L)$ and $\Gamma(L)$ is a homomorphism and $\Gamma(L)$ and $\Gamma(L)$ defined by $\Gamma(L)$ defined by $\Gamma(L)$ defined by $\Gamma(L)$ and $\Gamma(L)$ defined by $\Gamma(L)$ defined by $\Gamma(L)$ and $\Gamma(L)$ defined by $\Gamma(L)$ d

References:

- Birkoff G (1948): Lattice theory, American Mathematical Society, Colloquium Publications, Vol.25, New York.
- 2. Fernando Guzman and Craig C.Squir (1990): The Algebra of Conditional logic, Algebra Universalis, 27, 88-110.
- 3. Koteswara Rao. P(1994): A*-Algebra, an If-Then-Else structures (Doctoral Thesis) , Nagarjuna University, A.P., India.
- 4. Venkateswara Rao.J (2000): On A*-Algebras (Doctoral Thesis), Nagarjuna University, A.P., India.
- 5. Manes E.G (1989) : The Equational Theory of Disjoint Alternatives, Personal Communication to Prof.N.V.Subrahmanyam.
- 6. Manes E.G (1993): Ada and the Equational Theory of If-Then-Else, Algebra Universalis 30, 373-394.
- 7. Ramabhadra Sarma.I., Koteswara Rao.P (1996): On the algebra of Disjoint Alternatives, Southeast Asian Bulletin of Mathematics 20(1996).
- 8. Srinivasa Rao.K.(2009): Structural Compatibility of Pre A*-Algebra (Doctoral Thesis), Acharya Nagarjuna University, A.P., India.
- 9. Satyanarayana.A, (2012), Algebraic Study of Certain Classes of Pre A*-Algebras and C-Algebras (Doctoral Thesis), Nagarjuna University, A.P., India
- 10. S. Pious Missier, S. Jackson, On Soft Jp Closed Sets In Soft Topological Spaces; Mathematical Sciences International Research Journal ISSN 2278 8697 Vol 5 Issue 2 (2016), Pg 207-209
