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Introduction:  The most powerful notion in analysis is the concept of topological structures and their 
ÇÅÎÅÒÁÔÉÏÎÓȢ 4ÏÐÏÌÏÇÙ ÉÓ Á ÂÒÁÎÃÈ ÏÆ ÍÁÔÈÅÍÁÔÉÃÓȟÉÔȭÓ ÃÏÎÃÅÐÔÓ ÅØÉÓÔ ÉÎ ÁÌÍÏÓÔ ÁÌÌ ÂÒÁÎÃÈÅÓ ÁÎÄ ÁÌÓÏ ÉÎ ÒÅÁÌ ÌÉÆÅ 
problems. Lellis Thivagar et al [1] introduced nano topological space with respect to a subset X of an finite 
universe which is defined interms of lower and upper approximations of X. The elements of the nano 
topological space are called nano open sets.In this paper we have introduced a new space nano topologized 
stochastic approximation space from the approximation space. We define the upper and lower probability of 
an event interms of the lower and upper approximation of the event using the nano open set,nano a- open 

set, nano semi- open set, nano regular open set and nano generalised open set and the results are compared. 
Nano closure space in digraph is also introduced and the upper and lower probability of a subgraph of a 
digraph is defined and studied.  
 
Preli minaries:  

Definition 2.1 :[6] Let U  be a non-empty finite set of objects called the universe and R be an equivalance 

relation on U  named as the indiscernibility relation. Elements belonging to the same equivalance class are 

said to indiscernible with one another.The pair (U ,R) is said to be the approximation space.   

(i)  The lower approximation of X with respect to R is the set of all objects, which can be for certain classified 

as X with respect to R and it is denoted by (U , )(XRt ). That is  

)(XLR  = })(:)({ XxRxR ÌÇ  where R(x)denotes the equivalence class determined by x.  

(ii)  The upper approximation of X with respect to R is the set of all objects, which can be possibly classified as 

X with respect to R and it is denoted by )(XUR . That is  

)(XUR  = })(:)({ Å̧ÆÇ XxRxR   

(iii)  The boundary region of X with respect to R is the set of all objects which can be classified neither as X nor 

as not-X with respect to R and it is denoted by )(XBR .That is  

)(XBR = )()( XLX RR -U .  

Definition 2.2 :  [6] Let U  be the universe, R be an equivalance relation on U  and  

)(XRt  ={  U , Å, )(XLR , )(XUR , )(XBR } where X Ì U . Then )(XRt  satisfies the following axioms   

(i) U  and )(XRtÍÅ .  

(ii) The union of the elements of any subcollection of )(XRt  is in )(XRt .  

(iii) The intersection of the elements of any finite subcollection of )(XRt  is in )(XRt . 

That is )(XRt  is a topology on U  called the nanotopology on U  with repect to X. We call (U , )(XRt ) as the 

nano topological space. The elements of )(xRt  are called as nano open sets.  
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Definition 2.3:  :[6] If ( U , )(XRt ) is a nano topological space with respect to X where   X Ì U  and if A Ì 

U ,then the nano interior of A is defined as the union of all nano-open subsets of A and it is denoted by 

Nint(A). That is Nint(A)is the largest nano -open subset of A. The nano closure of A is defined as the 
intersection of all nanoclosed sets containing A and it is denoted by Ncl(A). That is Ncl(A)is the smallest nano 
closed set containing A.  
  

Definition 2.4 :[6] Let ( U , )(XRt ) be a nano topological space and A UÌ . Then A is said to be   

(i) nano semi open if A ))(( Aintcl NNÌ   

(ii) nano pre-open if A ))(( Aclint NNÌ   

(iii) nano a-open if A ))((( Aintclint NNNÌ   

(iv) nano regular open if A = ))(( Aclint NN   

NSO(U ,X), NPO(U ,X), NaO( U ,X) respectively denote the families of all nano semi-open, nano pre-open 

and nano a-open subset of U .  

 

Definition 2.5 : Let (U , )(XRt ) be a nano topological space and A UÌ . Then A is said to be nano generalised 

closed set (briefly, closedg-N ) if GAcl Ì)(N  whenever GAÌ  where G is nano open in (U , )(XRt ). 

Complement of a nano generalised closed set is called nano generalised open set.  
 
Definition 2.6 :[2] A graph G is an ordered pair of disjoint sets (V, E), where V is nonempty and E is a subset of 
unordered pairs of V. The vertices and edges of a graph G are the elements of V=V(G) and E=E(G) respectively. 
We say that a graph G is finite (resp. infinite) if the set V(G) is finite (resp.finite). The degree of a vertex uÍ 
V(G)is the number of edge in a graph contains a vertex u. u is called an isolated point if the degree of u is zero. 
An edge which has the same vertex to ends is called a loop and the edge with distinct ends is called a link.  
 
Definition 2.7 :[2] A graph is simple if it has no loops and no two of its links join the same same pair of 
vertices. A graph which has no edge called a null graph. A graph which has no vertices is called a empty graph.  
 
Definition 2.8 : [2] If G(V, E) is a directed graph and u,v Í V, then   

(i) u is invertex of v if )(GEuvÍ . 

(ii) u is outvertex of v if )(GEvuÍ . 

ɉÉÉÉɊ 4ÈÅ ÉÎÄÅÇÒÅÅ ÏÆ Á ÖÅÒÔÅØ ȭÖȭ ÉÓ ÔÈÅ ÎÕÍÂÅÒ ÏÆ ÖÅÒÔÉÃÅÓ ȭÕȭ ÓÕÃÈ ÔÈÁÔ )(GEuvÍ . 

ɉÉÖɊ 4ÈÅ ÏÕÔÄÅÇÒÅÅ ÏÆ Á ÖÅÒÔÅØ ȭÖȭ ÉÓ ÔÈÅ ÎÕÍÂÅÒ ÏÆ ÖÅÒÔÉÃÅÓ ȭÕȭ ÓÕÃÈ ÔÈÁÔ )(GEvuÍ .  

 
Probability in Nano Topological Spaces: Here we introduce nano topologized approximation space, nano 
topologized stochastic approximation space, nano measure and discuss their properties. 
 

Definition 3.1 :  Let U  be a non-empty finite set of objects called the universe, R be an equivalence relation on 

U  then ( U ,R) is called the approximation space. Let )(ARt  is the nano topology associated with a subset A 

of U  then the triple ))(,,( AR RtU  is called the nano-topological approximation space.  

 

Definition 3.2 :  Let (U ,R) be the approximation space with the equivalence relation R and )(ARt  is the 

nano topology associated with a subset A of U. Let p  be the probability measure with the following properties 

)(Åp  = 0, U(p )= 1 and if B = iXÇ  then )(Bp = )( iXpä . Then ))(,,,( ApR RtU  is called the nano-

topologized stochastic approximation space.  
 

Definition 3.3 :  Let B be an event in the nano-topologized stochastic approximation space ))(,,,( ApR RtU  

then the nano lower and nano upper probability of B is given by  
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)(BpN  = ))(( Bintp N  

)(BpN  = ))(( Bclp N   

  

Definition 3.4 :  Let B be an event in the nano-topologized stochastic approximation space ))(,,,( ApR RtU  

then the nano generalised lower and upper probability of B is given by  

)(BpgN  = ))(( Bgintp N  

)(BpgN  = ))(( Bgclp N   

  

Definition 3.5 : Let B be an event in the nano-topologized stochastic approximation space ))(,,,( ApR RtU  

then   

(i)  The nano measure of B is given by )(* Bm  = )(BpN  - )(BpN   

(ii)  The nano generalised measure of B is given by )(* Bgm  = )(BpgN  - )(BpgN   

 
Proposition 3.6 : Let X and Y are events in the nano-topologized stochastic approximation space 

))(,,,( ApR RtU  then the nano generalised lower and upper probability of B satisfy the following properties   

(i) )(ÅpgN  = )(ÅpgN  =0  

(ii) )(UpgN  = )(UpgN =1  

(iii) )(XpgN  ¢ p(X) ¢ )(XpgN   

(iv) )( YXpg ÇN  ² )(XpgN  + )(YpgN   

(v) )( Yxpg ÇN  = )(XpgN  + )(YpgN   

(vi) )( YXpg ÆN  = )(XpgN  . )(YpgN   

(vii) )( YXpg ÆN  ¢ )(XpgN  . )(YpgN   

 
Proof : 

(i) Since )(ÅgintN  = )(ÅgclN  = Å.  

Therefore p( )(ÅgintN ) = p( )(ÅgclN ) = p(Å) = 0. By the definition we get the result.  

(ii) Since )(UgintN  = )(UgclN  = U.  

Hence p( )(UgintN ) = p( )(UgclN ) = p(U) =   1.we get the result.  

(iii) Since )(XgintN  Ì X Ì )(XgclN .  

Therefore p( )(XgintN ) ¢ p(X) ¢ p( )(XgclN ). 

From the definition we get the required result.  

(iv) We know that )( YXgint ÇN  É )(XgintN  Ç )(YgintN . 

Therefore p( YXgint Ç(N ) ² p( )(XgintN ) + p( )(YgintN ). Hence the result.  

(v) Since )( YXgcl ÇN  = )(XgclN  Ç )(YgclN . 

Hence p( )( YXgcl ÇN ) = p( )(XgclN ) + p( )(YgclN ).We get the result.  

(vi)  Since )( YXgint ÆN  = )(XgintN  Æ )(YgintN . 

Therefore p( )( YXgint ÆN ) =p( )(XgintN ) . p( )(YgintN ). We get the result.  

(vii) Since )( YXgcl ÆN  Ì )(XgclN  Æ )(YgclN . 

Therefore p( )( YXgcl ÆN ) ¢ p( )(XgclN ) . p( )(YgclN ). We get the result.  

Proposition 3.7 :  Let X and Y are events in the nano-topologized stochastic approximation space 

))(,,,( ApR RtU  then the nano generalised measure of X and Y satisfy the following properties   

(i) )(* YXg Çm  ¢ )(* Xgm  + )(* Ygm   
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(ii) )(* YXg Æm  ¢ )(* Xgm  . )(* Ygm   

Proof  :   

(i) )(* YXg Çm  = )( YXpg ÇN  - )( YXpg ÇN . By the proposition (v) and (vi) we get )(* YXg Çm  ¢ 

)(XpgN  + )(YpgN  - )(XpgN  - )(YpgN  ¢ )(* Xgm  + )(* Ygm  

(ii) )(* YXg Æm  ¢ )( YXpg ÆN  - )( YXpg ÆN . By the proposition (vii) and (viii) we get )(* YXg Æm  ¢ 

)(XpgN  . )(YpgN - )(XpgN  . )(YpgN ¢ )(* Xgm  . )(* Ygm  

 
Consider the experiment of choosing one card from four cards numbered from one to four.The collection of 

four elements forms the outcome space U  = {1,2,3,4}. Let R be the equivalence relation on U  such that 

R/U  = {3,4}}{2},{{1}, . Let A={2,3}  thus  

)(ARt  = {3,4}}{2,3,4},{2},,,{ ÅU . Define the variable X to be the number on the chosen card. The 

following table gives the nano lower and upper probabilities of the random variable X.  
  

X 1 2 3 4 

)=( xXpN  0  1/4  0  0  

)=( xXpN  1/4 1/2 ¾ 3/4 

 
The following table gives the nano generalised lower and upper probabilities of the random variable X  
  

X 1 2 3 4 

)=( xXpgN  0  1/4  1/4  1/4  

)=( xXpgN  1/4 1/2 ½ 1/2 

 

To find the measure :  Consider the event X ={3}  

)(* Xm  = )(XpN  - )(XpN  = 
4

3
 -0 = 

4

3
 

)(* Xgm  = )(XpgN  - )(XpgN  = 
2

1
 - 

4

1
 =

4

1
 

Therefore,we get ¢0  )(* Xgm  ¢ )(* Xm  1¢ . 

 
Remark 3.9 :  
a) Neither the sum of the nano lower probabilities nor the sum of nano upper probabilities equal to one. 
b) Neither the sum of the nano generalised lower probabilities nor the sum of nano generalised upper 

probabilities equal to one. 
c) The nano generalised measure of an event is smaller than the nano measure of an event.  
 
Near Probability in Nano Topological Spaces:  Here we find some rules to define nano j-lower probability 
and nano j-upper probability of an event B where j represent the near open sets in nano toplogy  
 

Definition 4.1 : Let B be an event in the nano-topologized stochastic approximation space ))(,,,( ApR RtU  

then the nano j-lower probability and nano j -upper probability of B is given by  

)(BpjN  = ))(( Bjintp N  

)(BpjN  = ))(( Bjclp N  

where j },,{ rsaÍ   

  

Proposition 4.2 : Let B be an event in the nano-topologized stochastic approximation space ))(,,,( ApR RtU  
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then the implication between the nano j- lower probability is given by the following diagram for all j

},,,{ grsaÍ  

)(BpN  ¢ )(BpSN  ¢ )(BpaN  ¢ )(BprN  ¢ )(BpgN   

Proof  : The proof is obvious.   
 

Proposition 4.3:  Let B be an event in the nano-topologized stochastic approximation space ))(,,,( ApR RtU  

then the implication between the nano j- upper probability is given by the following diagram for all j

},,,{ grsaÍ  

)(BpgN  ¢ )(BpsN  ¢ )(BpaN  ¢ )(BpN  ¢ )(BprN   

Proof  : The proof is obvious.  
 
Probability in Digraph via Nano g -open sets: Here we introduced nano closure space and nano generalised 
lower and upper probabilities on a digraph.  

Definition 5.1 :  Let G=[V(G), E(G)] be a digraph and GCl : )]([)]([ GVPGVP   an  

operator such that  

(i) It is Gm-closure operator if )]([ HVCl
m

G
 = ))](((.....([ HVClClCl GGG  m times, forevery subgraph 

GH Ì . 

(ii) It is called mG - topological closure operator if )]([
1

HVCl
m

G
+

 = )]([ HVCl
m

G
 for all GH Ì .  

  

Definition 5.2 : Let mG  = ),(
m

GClG  be an approximation space where G be a nonempty finite universe graph 

and 
m

GCl  be the closure general relation on G and 
m

CGt  is the mG -topological space associated with the mG . 

Then the triple mG  = [G, GCl ,
m

CGt ] is called as mG  topological closure approximation space.  

  

Definition 5.3: Let mG  = [G, GCl ,
m

CGt ] be a mG  topological closure approximation space and H be any 

subgraph of G then )]((),([ HVGV
m

Gt  is called the mnanoClG  topological space.  

  

Definition 5.4 : Let )]((),([ HVGV
m

Gt  be the mnanoClG  topological space where mG  = [G, GCl ,
m

CGt ] be the 

mG  topological closure approximation space and H be any subgraph of G.Then ]),((),([ pHVGV
m

Gt  is called 

the mnanoClG  topological stochastic approximation space.  

 

Definition 5.5:  Let K be an event in the mnanoClG  topological stochastic approximation space 

]),((),([ pHVGV
m

Gt  then the nano generalised lower and upper probability is given by  

)(KpgN  = p( )(KgintN ) 

)(KpgN  = p( )(KgclN )  

  

Definition 5.6 : Let K be an event in the mnanoClG  topological stochastic approximation space 

]),((),([ pHVGV
m

Gt  then the nano generalised measure of K is given by )(* Km  = )(KpgN  - )(KpgN   

  

Example 5.7 : Consider the following graph G=[V(G),E(G)] whereV(G)= },,,,{ 54321 vvvvv  and E(G)=

)},(),,(),,)(,(),,(),,{( 545242433121 vvvvvvvvvvvv   

m
CGt = }},,,{},,,{},,{},,{},{,,{ 432132131211 vvvvvvvvvvvvGÅ  
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Let H= },{ 51 vv  and 
m

Gt  = }},,,{},,{},{,),({ 5432411 vvvvvvvGV Å   

  

v  
1v  

2v  3v  4v  5v  

)=( vVpgN  1/5  1/5  1/5  0 1/5  

)=( vVpgN  2/5 1/5 2/5 1/5 1/5 

 

Proposition 5.8 : Let K be an event in the mnanoClG  topological stochastic approximation space 

]),((),([ pHVGV
m

Gt  then the nano generalised lower and upper probability of K satisfy the following 

properties   

(i) )(ÅpgN  = )(ÅpgN  =0  

(ii) )(GpgN  = )(GpgN =1  

(iv) )(KpgN  ¢ p(K) ¢ )(KpgN   

(v) )( c

g KpN  = 1- )(KpgN   

(vi) )( c

g KpN  = 1- )(KpgN   

  
Proof  :   

(i) Since )(ÅgintN  = Å and )(ÅgclN  = Å therfore p( )(ÅgintN )= 0 and 

 p( )(ÅgclN )=0. Hence the result.  

(ii) Since )(GgintN  = G and )(GgclN  = G therfore p( )(GgintN )= 1 and  

p( )(GgclN )=1.Hence the result.  

(iii) Since )(KgintN  Ì K Ì )(KgclN . Therefore  

p( )(KgintN ) ¢ p(K) ¢ p( )(KgclN ).Therefore we get the required result.  

(iv) )( c

g KpN  = p( )( cKgintN )= p(G)- )(KgclN ) = p(G)-p( )(KgclN ) = 1- )(KpgN   

(v)  As similar to the above case.  

Since )(ÅgintN  = Å and )(ÅgclN  = Å therefore p( )(ÅgintN )= 0 and  

p( )(KgclN )=0.Hence the result.   

Proposition:5.9  Let K and T are events in the mnanoClG  topological stochastic approximation space 

]),((),([ pHVGV
m

Gt  then the nano generalised lower and upper probability of K and T satisfy the following 

properties   

(i) )( TKpg ÇN  ² )(KpgN  + )(TpgN   

(ii) )( TKpg ÇN  = )(KpgN  + )(TpgN   

(iii) )( TKpg ÆN  = )(KpgN  . )(TpgN   

(iv) )( TKpg ÆN  ¢ )(KpgN  . )(TpgN   

Proof  : Since the following condition are true for the graphs K and T the proof is obvious.   

(i) )( TKgint ÇN  É )(KgintN  Ç )(TgintN .  

(ii) )( TKgcl ÇN  = )(KgclN  Ç )(TgclN   

(iii) )( TKgint ÆN  = )(KgintN  Æ )(TgintN   

(iv) )( TKgcl ÆN  Ì )(KgclN  Æ )(TgclN   

Conclusion : Here we intoduce some new type of probabiliy measures in nano topological space and explain 
ÉÔȭÓ ÁÄÖÁÎÔÁÇÅÓ ×ÉÔÈ ÔÈÅ ÅØÁÍÐÌÅȢ )Î ÄÉÇÒÁÐÈ ×Å ÉÎÔÒÏÄÕÃÅ ÔÈÅ ÃÌÏÓÕÒÅ ÓÔÏÃÈÁÓÔÉÃ ÁÐÐÒÏØÉÍÁÔÉÏÎ ÓÐÁÃÅ ÁÎÄ 
study its properties. This can be further extended to matrices and real life problems.  
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Abstract: In this paper, I prove the common fixed point theorem for a pair of mappings satisfying rational type 
ÃÏÎÔÒÁÃÔÉÖÅ ÃÏÎÄÉÔÉÏÎÓ ÉÎ ÆÒÁÍÅ ×ÏÒË ÏÆ ÃÏÍÐÌÅØ ÖÁÌÕÅÄ ÍÅÔÒÉÃ ÓÐÁÃÅ ÕÎÄÅÒ  ʙ ɀ contractive  condition . The 
prove results generalize and extended some of the known results  in the  literature.  
 
Keywords:  Contractive Type Mapping , Complex 6ÁÌÕÅÄ -ÅÔÒÉÃ 3ÐÁÃÅ ȟ ɴ ɀContractive Condition, Common 
Fixed Point . 
 
AMS Classification :  54H25, 47H10.  

 
Introduction : One of the main area in the study of fixed point is metric fixed point theory, where the major 
and classical result was given prove by Banach [1], known as the Banach contraction principle, states that if 
(X,d) is a compete metric space and Ὕȡὢᴼὢ  is a contraction mapping i.e. 
 
Ὠὼȟώ Ὠὼȟώ for all ὼȟώ ɴ ὢȟ where  is non negative number s.t.  ρȢ then T has a unique fixed point.  
In 2011, Azam, A & fisher, B & Khan M. [2] introduced the complex valued metric space & Verma & Pathak 
[3]:,solanki et.al.[5], sintunavarat, cho., Kumam [4]: Chandok, S. [6,7,10]: Jungek, LG [11]; Sessa S [8]; 
Wintunavarat W [13]; Fouz kard F [12]; Nashin Inded Hashn [9] and many others. In this paper, we prove some 
common fixed point theorems for two pair of weakly mapping satisfy a contractive condition of rational type. 
 
In 1984, Khan M.S., Swalech M. and Sessa S. [15] expanded the research of the metric fixed point theory to a 
new a category by introducing a control function which they called an altering distance function.  
 
Definition  1A [15 ]: A function  •ḊὙ ᴼὙ is called an altering distance function if the following properties 
are satisfied: 
•      •ὸ π ὸ π 
•      • Ὥί άέὲέὸέὲὭὧὥὰὰώ ὲέὲὨὩὧὶὩὥίὭὲὫ 
•      • Ὥί ὧέὲὸὭὲόέόί 
by  •  we denote the set of the all altering distance function. 
 
Theorem 1B [15]: Let (M,d) be a complete metric space, let   •    and  let. 
Ὓȡὓᴼὓ be a mapping which satisfies the following inequality 
•ὨὛὼȟὛώ ὥ•Ὠὼȟώ  
For all ὼȟώ  ὓ ὥὲὨ Ὢέὶ ίέάὩ π ὥ ρȢ Then S has a unique fixed point ᾀὓ  and moreover for each  
ὼ  ὓὒὭάO Ὓὼ ᾀ  
Lemma 1C Let (M,d) be a metric space. Let ὼ  be a sequence in M such that  ὒὭάO •Ὠὼȟὼ π 
If ὼ  is not a Cauchy sequence in M, then there exist an ‐ π and sequence of integers positive {m(k)} and 
{n(k)} with  
m(k) > n(k) > K 
Such that 

Ὠὼ ȟὼ ‐ȟ     Ὠὼ ȟὼ ‐ 

And 

(i)  ὒὭάO Ὠὼ ȟὼ ‐ 

(ii)  ὒὭάO Ὠὼ ȟὼ ‐ 

(iii)  ὒὭάO Ὠὼ ȟὼ ‐ 
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Remark 1: Form Lemma 1C is easy to get   ὒὭάO Ὠὼ ȟὼ ‐ 

Theorem 1.1 let T be a continuous self map defined on a complete metric space (X, d). Suppose that T satisfies 
the following  contractive condition.  

ὨὝὼȟὝώ 
ȟ ȟ ȟ

ȟ
Ὠὼȟώȟ    ᶅ ὼȟώᶰὢȟὼ ώȟȣȣρȢρȢὥ  where ȟᶰπȟρȟίȢὸȢ    ρ . Then T 

has a unique fixed point 
Also, in 1975 Dass & Gupta prove that every continues self map on the metric space (X, d) which satisfies the 

ὨὝὼȟὝώ 
ȟ  ȟ

ȟ
Ὠὼȟώȟ    ᶅ ὼȟώᶰὢȟȣȣρȢρȢὦ where  

ȟᶰπȟρȟίȢὸȢ    ρ . Then T has a unique fixed point 
 
Preliminaries : Definition 2.1  [2] : let c be the set of complex number and let z1, z2, ɴ  C  as follows: 

ὤ ὤÚὙὩ ὤ ὙὩὤ ȟὍά ὤ Ὅάὤ ȣȢςȢρȢὥ 

Consequently  ὤ ὤ if one of the following condition is satisfied  
a) ὙὩ ὤ ὙὩὤ ȟὍά ὤ Ὅάὤ  
b) ὙὩ ὤ ὙὩὤ ȟὍά ὤ Ὅάὤ   
c) ὙὩ ὤ ὙὩὤ ȟὍά ὤ Ὅάὤ  
d) ὙὩ ὤ ὙὩὤ ȟὍά ὤ Ὅάὤ   
In particular ὤḸὤ if Z1  Z2 and one of (a), (b),(c) is satisfies and if Z1  ὤ then only (c) is satisfied that  
1. ὥȟὦ ɴ Ὑ ὥὲὨ ὥ ὦ ᵼὥὤ ὦὤ   ᶅὤᶰὅ 

2. π ὤṀὤ ᵼ ὤ ὤ  
3. ὤ ὤ ὥὲὨ ὤ ὤᵼὤ ὤ 
 
Definition 2.2 :   Let X be a non-empty set, & C be the set at complex numbers suppose that the mapping d: 
ὢ ὢᴼὅ  satisfies the following conditions  
(i)  π Ὠὼȟώ  ᶅὼȟώ ɴ ὢ Ǫ Ὠ ὼȟώ π  ὭὪὪ ὼ ώ 
(ii)  Ὠὼȟώ Ὠώȟὼ  ᶅὼȟώ ɴ ὢ 
(iii)  Ὠὼȟώ Ὠὼȟᾀ  Ὠᾀȟώ  ᶅὼȟώ ɴ ὢ 
Then d is called a complex valued metric on X and (X, d) is called a complex valued metric space.  
 
Def inition 2.3 : Let (X, d) be a complex valued metric space and let ὼ   be a sequence in X. Then ὼ   
converge to ὼ iff    

Ὠὼȟὼ ᴼπ
as ὲᴼЊ 

Definition 2.4  Let (X, d) be a complex valued metric space and let ὼ be a sequence in X. Then  ὼ  is a 
cauchy sequence iff 

 
Ὠὼȟὼ ᴼπ

    as ὲᴼЊ where άᶰὔ. 

 
Main Result:  
Theorem 3.1:  Let (X, d) be a complete complex valued metric space and let the mapping ὊȟὋḊὢᴼὢ  satisfies 
the condition.  

ʙὨὊὼȟὋώ •Ὠὼȟώ   •
ȟ  ȟ ȟ ȟ

 ȟ
•

ȟ ȟ

ȟ
ὨὋώȟὼ•   Ὂὼȟώ    

            ............3.1.1 
for all ὼȟώȟɴ ὢ  s. t. ὼ ώ, Ὠὼȟώ π where ȟȟȟ are non negative reals with   ς ς ρ or d(Fx, 
Gy) = 0 If  Ὠὼȟώ π. Then   F & G  have a unique common fixed points.  
 
Proof:  Let ὼ be on a arbitrary point in X and define ὼ Ὂὼ  ;  
ὼ Ὃὼ  ύὬὩὶὩ Ὧ πȟρȟςȟσȣȣ . Then  
•Ὠὼ ȟὼ •ὨὊὼ ȟὋὼ  

 •Ὠὼ ȟὼ   •
Ὠὼ ȟὊὼ Ὠ ὼ ȟὋὼ Ὠὼ ȟὋὼ Ὠὼ ȟὊὼ

Ὠ ὼ ȟὼ

•
Ὠὼ ȟὊὼ Ὠὼ ȟὋὼ

Ὠ ὼ ȟὼ  
ὨὋὼ•  ȟὼ Ὂὼ ȟὼ  
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ʙὨὼ ȟὼ

•Ὠὼ ȟὼ   •
ȟ  ȟ ȟ

 ȟ
•

ȟ ȟ

 ȟ  

Ὠὼ•  ȟὼ ὼ ȟὼ   
•Ὠὼ ȟὼ •Ὠ ὼ ȟὼ •Ὠὼ ȟὼ Ὠὼ• ȟὼ    
  Ὠὼ• ȟὼ   Ὠὼ• ȟὼ  

ʙὨὼ ȟὼ  •Ὠὼ ȟὼ    

So that  

•
Ὠὼ ȟὼ  

  

ρ    •
Ὠὼ ȟὼ

 

As by triangle inequality  

•
Ὠὼ ȟὼ

•
Ὠὼ ȟὼ

•
Ὠὼ ȟὼ

  

similarly:  

•Ὠὼ ȟ ὼ •ὨὊὼ ȟὋὼ   

 

•Ὠὼ ȟὼ  •
ȟ  ȟ ȟ ȟ

 ȟ

•
ȟ ȟ

 ȟ  
•  ὨὋὼ ȟὼ Ὂὼ ȟὼ    

•Ὠὼ ȟὼ  •
ȟ  ȟ ȟ ȟ

 ȟ
•

ȟ ȟ

 ȟ  

•  Ὠὼ ȟὼ ὼ ȟὼ   
 
•Ὠὼ ȟὼ   Ὠὼ• ȟὼ  •Ὠὼ ȟὼ  
 

ʙὨὼ ȟὼ  •Ὠὼ ȟὼ   

 
As by triangle inequality  

•
Ὠὼ ȟὼ

•
Ὠὼ ȟὼ

•
Ὠὼ ȟὼ

   

so that  

•
Ὠὼ ȟὼ ί• Ὠὼ ȟὼ

 where   s =   ρ  

•
Ὠὼ ȟὼ ί•Ὠὼȟὼ Ễ •ί Ὠὼȟὼ

 so that  

for any  m > n 
As by triangle inequality   

•
Ὠὼȟὼ

•
Ὠὼȟὼ

•
Ὠὼ ȟὼ

•
Ὠὼ ȟὼ Ễ

•
Ὠὼ ȟὼ

   

 

•ί ί Ễ ί Ὠὼȟὼ  

• Ὠὼȟὼ   

Hence         ʙ. 
Ὠὼȟὼ • ὨὼȟὝὼ

  as  m, n ᴼЊ  

Suppose it is not so which means that there is a constant ‐ π such that for each positive integer j, there are 
positive integers m(j) and n(j) with m(j) > n(j) > j such that  

Ὠὼ ȟὼ ‐ȟὨὼ ȟὼ ‐ 

ὒὭάOὨὼ ȟὼ ‐ 

ὒὭάOὨὼ ȟὼ ‐ 

For ὼ ὼ ὥὲὨ ώ ὼ  ὝὬόί ύὩ ὫὩὸ ὥ ὧέὲὸὶὥὭὧὸὭέὲ. 



Mathematical Sciences International Research Journal Volume 6 Issue 2                                 ISSN 2278-8697 

 

 

IMRF Biannual Peer Reviewed (Referred) International Journal | SE Impact Factor 2.03                       |    11  

This implies that ὼ  is a cauchy sequence in X. Since X is complete, there exists some ὺᶰὢ such that ίᴼὺ 
as ὲᴼЊ.  
suppose on the contrary that ὺ Ὂὺ, so that ὨὺȟὊὺ ὤ π.  
Nowʙ ὨὺȟὊὺ  •ὤ •Ὠὺȟὼ  •Ὠὼ ȟὊὺ 
•Ὠὺȟὼ  •ὨὋὼ ȟὊὺ  

 

•Ὠὺȟὼ Ὠὺȟὼ   •
 ȟ   ȟ ȟ ȟ

  ȟ
•

 ȟ ȟ

 ȟ  

ὨὋὼ•  ȟὺ Ὂὺȟὼ   
 

•Ὠὺȟὼ •Ὠὺȟὼ   •
  ȟ ȟ ȟ

  ȟ
•

ȟ

 ȟ  
Ὠὼ•  ȟὺ

Ὂὺȟὼ   
so that  

•
ὨὺȟὊὺ

•
ὤ

•
Ὠὺȟὼ • Ὠὺȟὼ  • 

  ȟ ȟ  ȟ

  ȟ

•
ȟ

 ȟ  

•  Ὠὼ ȟὺ ὨὊὺȟὼ
  

which on mapping ὲᴼЊ  

Therefore ʙ 
ὨὺȟὊὺ π

 

which is contradiction so that ὺ Ὂὺ  
similarly we show that ὺ Ὃὺ  
Thus implies that ὺ is fixed point  
 
Uniqueness: Let ύ Ὥὲ ὢ be another common fixed point of Ὂ Ǫ Ὃ. Then  

•Ὠὺȟύ • Ὠ ὊὺȟὊύ

•Ὠὺȟύ  • 
ὨὺȟὊὺὨ ὺȟὋύ ὨύȟὋύὨύȟὊὺ

Ὠ ὺȟύ
•
ὨὺȟὊὺὨύȟὋύ

Ὠ ὺȟύ 
ὨὋύȟὺ•  Ὂὺȟύ  

 •Ὠ ὺȟύ  •ὨύȟὋύ   •Ὠ Ὃύȟὺ  Ὠὺȟύ   
•Ὠὺȟύ  ς•Ὠ ὺȟύ  

•
Ὠὺȟύ •”Ὠ ὺȟύ

 

where ”   ς ρ so ὺ ύ,  which proves the uniqueness of common fixed point.   
 
Acknowledgements : I express my whole hearted thanks to Dr. Ramakant Bhardwaj for her  valuable guidance 
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FRACTIONAL KINETIC EQUATIONS  
INVOLVING STRUVE FUNCTION 

USING SUMUDU TRANSFORM 
 
 

Kottakkaran Sooppy Nisar  
Department of Mathematics/College of Arts & Science/Wadi Aldawaser 

Prince Sattam Bin Abdulaziz University/Alkharj/ Kingdom of Saudi Arabia 
 

 
Abstract:  The importance of fractional differential equations in the field of applied science gained more 
attention not only in mathematics but also in physics and engineering applications. The effectiveness and the 
importance of the kinetic equation in certain astrophysical problems we develop a generalized form of the 
fractional kinetic equation involving Struve functions. The obtained results are useful to investigate many 
problems in Mathematical physics. 
 
Keywords : Fractional Calculus, Kinetic Equations, Mittag-Leffler Function, Sumudu Transform. 

 
Introduction:  The Struve function [1] 
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is a particular solution of the non-homogeneous Bessel differential equation 
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where G is the classical gamma function. The function ()1v

v
z H z- -

 is entire functions of zand v . Recently, 

Watugala [2,3] introduced Sumudu integral transform is defined as follows (see [4ɀ6]): 

() () ()
0

; ,tG u S f t u e f ut dt
¤
-è ø= =ê úñ                                                                                                                    (3) 

 for ( )1 2
,u t tÍ -  where, 
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and 
1 2

, ,M t tare some positive real constants.  

The generalized Mittag-Leffler function (),E xa b  is defined by (see [7]):  

()
( ),

0

n

n

x
E x

n
a b

a b

¤

=

=
G +
ä                                                                                                                                       (4) 

Recent studies observed that the solutions of fractional order differential equations could model real-life 
situations better, particularly in reaction -diffusion type problems. Due to the potential applicability to wide 
variety of problems, fractional calculus is developed to large area of Mathematics physics and other 
engineering applications [8]-[15]. In view of the effectiveness and a great importance of the kinetic equation in 
certain astrophysical problems, the author develop a further generalized form of the fractional kinetic equation 
involving Struve function using Sumudu transform method. 
Solutions of Generalized Fractional Kinetic Equation for Struve Function: In this section, we will 
investigate the solution of the generalized fractional kinetic equations by considering Struve function. The 
results are as follows. 
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Theorem 1:  If Ctvd Í>> ,,0,0 m   and 
2

3
->m  then the solution of fractional kinetic equation  

() ( ) ()0

v v v v

t
N t N H d t d D N t

m

-= -                                                                                                      (5)  

is given by 
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                                                                                      (6)    

Proof: The Sumudu transform of Riemann-Liouville fractional integral operator is given by 

(){ } ()0
;v v

t
S D f t u u G u- =                                                                                                                   (7)    

where ()G u  is defined in (3). 

Now, applying the Sumudu transform to both sides of (5) and applying (1) and using 
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where  
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Taking inverse s Sumudu transform of (9) and using  { }
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In view of definition of Mittag -Leffler function given in (4), we obtained the required result. 
Theor em 2:  
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Proof: The proof of Theorems 2 would run parallel to those of Theorem 1. 
Graphical Representations: In this section we plot the graphs of main results established in (6). Graphs of 

the solution of Eq. (6) are depicted below for some parameter values, that is 
0

1N dm= = = and different 

values ofv .   

For Fig. 1, 2 and 3, we choose 0.1,0.2,0.3,0.4;0.5,0.7,0.9,1,1.5;v= and 1.6,1.7,1.8,1.9 respectively 

 
Fig 1: Solution of fractional kinetic equation (6) for 

0.1,0.2,0.3,0.4v=  
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Fig 2: Solution of fractional kinetic equation (6) for 

0.5,0.7,0.9,1,1.5v=  

 
 

Fig 3: Solution of fractional kinetic equation (6) for 

1.6,1.7,1.8,1.9v=  

 
 
Conclusion: In this paper, we have established solution of fractional kinetic equation involving Struve 
function with the help of Sumudu transform. It is not difficult to obtain several further analogous fractional 
kinetic equations and their solutions as those exhibited here by Theorem 1 and 2.  
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Abstract:  In this paper, we are going to introduce some properties of  ††  semi open sets / closed sets in 
bitopological spaces. In addition, we investigate several results in  ††  semi open sets / closed sets and 
 †† ††  semi continuous functions in bitopological spaces. Moreover, we show several results in   
semi open sets / closed sets in bitopological spaces. Bitopological space does not exist for every metric space. 
But it exists only for special type of metric spaces, known as ''asymmetric metric spaces''. There are many 
applications in different parts in m athematics. 
 
Keywords :   Semi Open Sets,  Semi Closed Sets,  Semi Continuous. 

 
Introduction:  J.C.Kelly started the study about bitopological spaces in 1963. He introduced the concept 
ȰÂÉÔÏÐÏÌÏÇÉÃÁÌ ÓÐÁÃÅȱȢ "ÅÓÉÄÅÓȟ ÈÅ ÉÎÔÒÏÄÕÃÅÄ ÖÁÒÉÏÕÓ ÐÒÏÐÅÒÔÉÅÓ ÉÎ ÂÉÔÏÐÏÌÏÇÉÃÁÌ ÓÐÁÃÅÓȟ ÁÎÄ ÇÏÔ ÓÏÍÅ 
generalizations of some specific results. Kelly initiated his study about bitopological space from quesi-metric 
and its conjugate. A quasi-pseudo-metric ὴ  ȟ  on a set ὢ on the Cartesian product ὢ ὢ satisfies the 
following properties:  ὴὼȟὼ π ȟᶅ ὼɴ ὢ ȟ ὴὼȟᾀ ὴὼȟώ ὴώȟᾀȟᶅ  ὼȟώȟᾀɴ ὢ and ὴὼȟώ π  iff 
 ὼ ώ ȟᶅ ὼȟώᶰὢ , then  ὴ ȟ is a quasi-metric. However, the symmetric property does not hold for quasi-
metric. Furthermore, every metric space is a quasi-metric space. But the converse need not be true. 
Bitopological spaces arise in a natural way by considering the topologies induced by sets of the form 
ὄ ώḊ ὴὼȟώ       and ὄ ώḊήὼȟώ  ; where ὴ and ή are quasi metrics on ὢ  and   ήὼȟώ

ὴώȟὼ. For a nonempty set  ὢ, we define two topologies † and † on ὢȢ Then, ὢȟ†ȟ†  is called a 
bitopological space. A topological space occurs for every metric space. But bitopological spaces  occur for quasi 
metric spaces or asymmetric metric spaces. Quasi-uniform spaces, which are generalizations of quasi-metric 
spaces, also induce bitopological spaces. This structure is a richer structure than that of a topological space. 
Some authors extended the suitable generalizations of standard topological properties into bitopological 
category. Most of the results are related with the theory, but some with applications. Any subset  ὃ of a 
bitopological space ὢȟ†ȟ†  is called open, if ὃ ÉÓ  ÂÏÔÈ  † ÏÐÅÎ ÁÎÄ  † ÏÐÅÎȢ Throughout this paper, 
† Ὥὲὸὃȟ† ὧὰὃȟ† † Ὥὲὸὃ  and  ,ὧὰὃ be the interior, closure interior and  closure of ὃ 
with respect to the topology † respectively, Ὥ ρȟς. Let † † Ὥὲὸὃ and  ὧὰὃ are the interior and 

 closure of ὃ with respect to the topology † Ƞ Ὦ ρίȟςίȢ Semi open sets in bitopological spaces introduced 

by Maheswari and Prasad in 1977. Further properties were studied by Bose in 1981. Banerjee initiated the notion  
  open sets in bitopological spaces in 1987. Khedr introduced and studied about  ††  ,open sets. Later 
Fukutake defined one kind of semi open sets and studied their properties in 1989. Any subset ὃ  of a 

bitopological space ὢȟ†ȟ†  is called † regular open, if ὃ † Ὥὲὸ† ὧὰὃ Ȣ  Any subset ὃ  of a 

bitopological space ὢȟ†ȟ†  is called  ††  semi open, if  ὃṖ† ὧὰ† Ὥὲὸὃ Ȣ In a bitopological space 

ὢȟ†ȟ† ,  ὃ is said to be  † open, if  for ὼɴ  ὃȟ there exists † regular open set Ὃ such that ὼɴ ὋṒὃȢ 
Complement of  † †  open set is called  † closed set. Collection of all  †  open sets and   open 
sets are denoted by  †  ὥὲὨ  †  respectively. Always † Ṓ†  and † Ṓ†Ȣ Recently, Edward Samuel and 
Balan established ††  semi open sets in bitopological spaces. Any subset ὃ  of a bitopological space 
ὢȟ†ȟ†  is called †† †semi open, if  ὟṖὃṖ  ὧὰὟ  , for some †  open set ὟȢ Similarly, Any subset 
ὃ  of a bitopological space ὢȟ†ȟ†  is called †† †semi closed, if  Ὂṗὃṗ  ὭὲὸὊ , for some  †  
closed set ὊȢ 
 
A function ὪḊ ὢȟ†ȟ†  O  ὣȟ„ȟ„  is said to be pairwise continuous if and only if the induced functions 
ὪḊ ὢȟ†  O  ὣȟ„  and ὪḊ ὢȟ†  O  ὣȟ„  are continuous. 
Consider the two bitopological spaces ὢȟ†ȟ†  and ὣȟ„ȟ„ . Then, a function ὪḊ ὢȟ†ȟ†  O  ὣȟ„ȟ„   is 
called  ††  semi continuous, if  Ὢ ὠ  is  ††  semi open set in  ὢ, for every  „  open set  ὠ in ὣ. 
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Methodology : 7Å ÈÁÖÅ ÉÎÔÒÏÄÕÃÅÄ ÓÏÍÅ ÄÅǢÎÉÔÉÏÎÓ ÏÆ ÖÁÒÉÏÕÓ ËÉÎÄ ÏÆ ÏÐÅÎ ÓÅÔÓȟ ÓÅÍÉ ÏÐÅÎ ÓÅÔÓȟ ÃÌÏÓÅÄ ÓÅÔÓȟ 
semi closed sets, continuity and semi continuity in bitopological spaces. In addition, we have discussed some 
properties of  ††  semi open/closed sets in bitopological spaces. We have proved the following : In a 
bitopological space ὢȟ†ȟ† ȟ  ὃ  is  ††  semi open iff ὢ͵ὃ  is  ††  semi closed. 
 
Further, we  have explained the properties of †† †semi continuous functions in ὢȟ†ȟ  . We have 
introduced the following results: Let  ὪḊ ὢȟ†ȟ†  O  ὣȟ„ȟ„  . Then, Ὢ is ††Ж semi continuous  iff 
  Ὢ Ὗ) is  ††Ж  semi closed  in ὢ, ᶅ   „ closed set Ὗ in ὣ.                       
 
Let ὪḊ ὢȟ†ȟ†  O  ὣȟ„ȟ„    be ††Ж semi continuous. Then, ᶅ  „Жopen set ὠ in ὣ,  ɱ††Ж  semi open 
set ὖ in ὢ such that Ὢὖ Ṗ ὠ. Moreover, A constant function ὪḊ ὢȟ†ȟ†  O  ὣȟ„ȟ„   is a ††Ж  semi 
continuous function. Besides, we have introduced the homeomorphism in bitopological spaces. With that, the 
following result is also proved: Let ὪḊ ὢȟ†ȟ†  O  ὣȟ„ȟ„  be bijective and homeomorphism. Then, Ὢ is 
closed and continuous. 
 
Results and findings: First we will show the following result : Let ὃ be a subset of a bitopological space 
ὢȟ†ȟ† . Then, ὃ is †† †† semi open iff   ὢ͵ὃ  is  †semi closed in ὢȟ†ȟ  Ȣ To prove this result, let ὃ 

be †† † semi open. Then, there exists a  †openset Ὗ such that ὟṖὃṖ  ὧὰὟ . This implies, 
† ὭὲὸὟ Ṗὃ ṖὟȢ i.e. † Ὥὲὸὠ Ṗὢ͵ὃṖὠ ; where Ὗ ὠ is a † †† closed set. Thus, ὢ͵ὃ  is   
semi closed. Conversely, let  ὢ͵ὃ  is  †† †  ,semi closed. Then  ὭὲὸὊ Ṗὢ͵ὃṖὊ, for some †  
closed set Ὂ. This implies, † ὧὰὊ ṗὃṗὊ and  Ὂ is † ††  open set. Thus, ὃ is    .semi open 
 
Every  † ††  open set is  †semi open in ὢȟ†ȟ  Ȣ And every †† †† semi open set is  semi open 
in ὢȟ†ȟ† Ȣ Similary, we can prove the same results for closed sets also. However, the converse of the above 
statements need not be true. 
 
If  ὃ and  ὄ are  †† †semi open sets in a bitopological space ὢȟ†ȟ  ȟ then  ὃ᷾ὄ is also ††  semi 
open set. But ὃ᷊ὄ may not be a ††  semi open set. Furthermore, if ὃ and  ὄ are subsets of a bitopological 
space ὢȟ†ȟ†   and ὃ᷾ὄ is a †† †† semi open set, then  ὃȟὄ need not be    semi open sets. If  ὃ and 
ὄ are †† †semi closed sets in a bitopological space ὢȟ†ȟ  ȟ then  ὃ᷊ὄ is also ††  semi closed. But 
ὃ᷾ὄ may not be a ††  semi closed set. Furthermore, if ὃ and  ὄ are subsets of a bitopological space 
ὢȟ†ȟ†   and ὃ᷊ὄ is a  †† ††  semi closed set, then  ὃȟὄ need not be   ,semi closed sets. Similarly 

Countable union of  †† †† semi open set is  †† semi open. And Countable intersection of   semi 
closed set is  ††  .semi closed 
 
Any subset  ὃ  is  †† †semi open set in a bitopological space ὢȟ†ȟ    if and only if  ὃṖ† ὧὰ†
Ὥὲὸὃ . Similarly, Any subset  Ὂ  is  †† †semi closed set in a bitopological space ὢȟ†ȟ    if and only if 

  ὃṗ† Ὥὲὸ† ὧὰὃ Ȣ We can prove the results for  †† as we did for  ††. Now, we introduce a result 

for a product of two sets. Let ὃȟὄ be the subsets of bitopological spaces (ὢȟ†ȟ†) and (ὣȟ„ȟ„) respectively. If 
ὃ ɴ semi open in ὢ and ὄ ɴ  ††  semi open set in ὣ, then, ὃ  „„  ὄ ɴ  † „   † „  semi 
open set in (ὢ ὣȟ† „    † „). Similarly, we can show that the previous result holds for closed set too.  
             
Now we are going to discuss the properties of ††  semi continuous functions in bitopological spaces. Let 
(ὢȟ†ȟ†) and (ὣȟ„ȟ„)  be two bitopological spaces. Then, a function ὪḊ ὢȟ†ȟ†  O  ὣȟ„ȟ„   is called 
 †† continuous, if the inverse image of each „Жopen set in ὣ is ††Жopen set in ὢ. A function ὪḊ
 ὢȟ†ȟ†  O  ὣȟ„ȟ„   is called ††   continuous, if the inverse image of each „Жopen set in ὣ is  ††Ж  
open set in  ὢ. A function  ὪḊ ὢȟ†ȟ†  O  ὣȟ„ȟ„   is called ††Ж  semi continuous, if   Ὢ ὠ  is  ††Ж  
semi open set in ὢ, for every  „  open set ὠ in ὣ. Further, If ὪḊ ὢȟ†ȟ†  O  ὣȟ„ȟ„   and ὫḊ
 ὣȟ„ȟ„  O  ὤȟ–ȟ–   be two ††Ж  semi continuous functions, then   Ὣ Ὢʐ : ὢȟ†ȟ†  Ÿ ὤȟ–ȟ–    need 
not be a  ††Ж  semi continuous.  
 
Now, we introduce the following result :  Let  ὪḊ ὢȟ†ȟ†  O  ὣȟ„ȟ„  . Then, Ὢ is  ††Ж semi continuous if 
and only if  Ὢ Ὗ) is ††Ж  semi closed in ὢ, for each „ closed set  Ὗ in  ὣ. 
Let ὪḊ ὢȟ†ȟ†  O  ὣȟ„ȟ„   be ††Ж  semi ÃÏÎÔÉÎÕÏÕÓȢ Then, ᶅ  „Жopen set  ὠ  in  ὣ,  ɱ ††Ж  semi open 
set  ὖ  in  ὢ such that  Ὢὖ Ṗ ὠ.  
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Furthermore, A constant function ὪḊ ὢȟ†ȟ†  O  ὣȟ„ȟ„   is ††Ж semi continuous. Because, Consider a 
 „ open set ὠ in ὣȢ If  ὧ ɴ  ὠ, then  Ὢ ὠ)  ὢ  is ††Ж semi open. If  ὧ ɵ  ὠ, then  Ὢ ὠ   ‰  is  ††Ж  
semi open. Since  ὢȟ‰  are ††Ж  semi open sets in  ὢ , Ὢ  is  ††Ж  semi continuous. 
 
Finally, we are going to define the homeomorphism in bitopological spaces. Let ὪḊ ὢȟ†ȟ†  O  ὣȟ„ȟ„ . 
Then, Ὢ is homeomorphism iff the maps   ὪḊ ὢȟ†  O  ὣȟ„  and ὪḊ ὢȟ†  O  ὣȟ„  are 
homeomorphism. To prove this result, suppose that  Ὢ is homeomorphism. Then, Ὢ is continuous and bijective. 
Further,  Ὢ ȡ ὣȟ„ȟ„ ᴼ ὢȟ†ȟ†  exists and continuous. Since  Ὢ is continuous, Ὢ and  Ὢ both are 
continuous. Clearly,  Ὢ and Ὢ are bijective. Since,  Ὢ  is continuous, both  Ὢ   ÁÎÄ  Ὢ  are continuous. 
Similarly, we can prove that the converse part of this result is also true. 
 
Let  ὪḊ ὢȟ†ȟ†  O  ὣȟ„ȟ„   be bijective and homeomorphism. Then, Ὢ  is continuous and closed. 
Since Ὢ is homeomorphism, Ὢ  ÁÎÄ  Ὢ   both are continuous. Let Ὗ be an open set in ὢȟ†ȟ† Ȣ Then, 
Ὢ Ὗ ὪὟ  is open set in space ὣȟ„ȟ„ Ȣ Thus, Ὢ is open map. Let Ὂ- a closed set in space ὢȟ†ȟ† Ȣ  

This implies,  ὢ͵Ὂ is open in ὢȟ†ȟ† Ȣ  So,  Ὢὢ͵Ὂ  is open in  ὣȟ„ȟ„ . But  Ὢὢ ͵ Ὂ Ὢὢ ͵ ὪὊ
ὣ ͵ ὪὊȢ This implies, ὣ ͵ ὪὊ is open in ὣȟ„ȟ„ . Therefore,  ὪὊ  is closed in space  ὣȟ„ȟ„ . i.e.  Ὢ  is 
closed. 
 
Conclusions:  In this paper, Some results of †† †† semi open sets / closed sets and   semi continuous 
functions in bitopological spaces have been discussed. Furthermore, we have introduced the homeomorphism 
of bitopological spaces. In addition, we have investigated the relationship between open sets (closed sets) and 
homeomorphism in bitopological spaces. We plan to extend our research work to uniform continuous, 
†† connectedness and ††  compactness. Further, we are interested to find some interesting results in 
bitopological spaces.  
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Abstract:  Exact solution of an unsteady magneto-hydrodynamic (MHD) convective flow problem of an 
incompressible, electrically conducting and visco-elastic (second order) fluid through a porous medium 
bounded by two infinite vertical porous plates is obtained analytically. The fluid is injected with constant 

velocity through the channel wall at ώᶻ  and simultaneously removed with same velocity through the 

other wall at ώᶻ . The temperature of the plate at ώᶻ   is assumed to be fluctuating span-wise 

cosinusoidally as Ὕᶻώᶻȟᾀᶻȟὸᶻ Ὕ Ὕ Ὕ ÃÏÓ
ᶻ

ᶻᶻ . A magnetic field of uniform strength is applied 

perpendicular to the planes of the channel plates. The magnetic Reynolds number is assumed very small so 
that the induced magnetic field is neglected. The temperature difference between the plates is high enough to 
induce the heat due to radiation. The Rosseland approximation is used to describe the radiation heat flux for 
the fluid as optically-thick gray gas, absorbing/emitting but non-scattering medium. Exact solution of the 
partial differential equations governing the flow under the prescribed boundary conditions has been obtained 
for the velocity and the temperature fields. The velocity, temperature and the skin-friction and Nusselt number 
in terms of their amplitudes and phase angles have been shown graphically to observe the effects of viscoelastic 
ÐÁÒÁÍÅÔÅÒ ʅȟ ÉÎÊÅÃÔÉÏÎȾÓÕÃÔÉÏÎ ÐÁÒÁÍÅÔÅÒ ‗, Grashof number Gr, Hartmann number M, the permeability of the 
porous medium K, Prandtl number ὖ, radiation parameter N, pressure gradient A and the frequency of 
oscillation The final results are then discussed in detail in the last section of the paper with the help of . 
figures.   
 
Keywords:  Magnetohydromagnetic (MHD), Convective, Span-Wise Fluctuating, Viscoelastic, Porous Medium, 
Radiation. 

 
Introduction: Many common liquids such as oils, certain paints, polymer solution, some organic liquids and 
many new material of industrial importance exhibit both viscous and elastic properties. Therefore, these fluids 
called viscoelastic fluids are being studied extensively. Many researchers have shown their interest in the 
fluctuating flow of a viscous incompressible fluid past an infinite or semi-infinite flat plate. Viscoelastic fluid 
flow through porous media has attracted the attention of scientists and engineers because of its importance 
notably in the flow of oil through porous rocks, the extraction of energy from geothermal region and drug 
permeation through human skin. The knowledge of flow through porous media is useful in the recovery of 
crude oil efficiently from the pores of reservoir rocks by displacement with immiscible water. The flow through 
porous media occurs in the ground water hydrology, irrigation, and drainage problems and also in absorption 
and filtration processes in chemical engineering. The scientific treatment of the problem of irrigation, soil 
erosion and tile drainage are the present developments of porous media. Nakayama and Koyama  [1] studied 
buoyancy induced flow of a non-Newtonian fluid over a non-isothermal body of arbitrary shape in a fluid 
saturated porous medium. Ariel  [2] analyzed the flow of viscoelastic fluid past a porous plate.  MHD flow of a 
viscoelastic fluid past a stretching surface was studied by Andersson [3]. Pillai et al.  [4] analyzed viscoelastic 
boundary layer flow through porous medium with heat transfer. Sharma and Pareek   [5],[6] examined an 
Unsteady flow and heat transfer through an elastico-viscous liquid along an infinite hot vertical porous moving 
plate in different situation.  Rahman and Sarkar  [7] investigated the unsteady MHD flow of a viscoelastic 
Oldroyd fluid under time varying body forces through a rectangular channel. Singh and Singh [8] studied an 
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MHD flow of a dusty viscoelastic (Oldroyd B-liquid) through a porous medium between two parallel plates 
inclined to horizon. Datti et al [9] studied MHD viscoelastic fluid flow over anon -isothermal stretching sheet. 
Roy and Chaudhury [10] analyzed heat transfer by laminar flow of an elastico-viscous liquid along a plane wall 
with periodic suction. Hameed and Nadeem  [11] studied unsteady MHD flow of a non-Newtonian fluid on a 
porous plate. 
 
Hayat et al  [12] discussed periodic unsteady flows of a non-Newtonian fluid. Kumar and Sivaraj  [13] studied 
MHD mixed convective viscoelastic fluid flow in a permeable vertical channel with Dufour, effect and chemical 
reaction. Singh   [14] analyzed viscoelastic mixed convection MHD oscillatory flow through a porous medium 
filled in a vertical channel. Singh   [15] analyzed an oscillatory mixed convection flow of a viscoelastic 
electrically conducting fluid in an infinite vertical channel filled with porous medium. Considering the Hall 
effects Attia [16] discussed unsteady Hartmann flow of a viscoelastic fluid. Attia [17] analyzed Unsteady MHD 
Couette flow of a viscoelastic fluid with heat transfer.Alphonsa and Singh [18] discussed  Hall  effect on 
radiating span-wise fluctuating MHD convective flow through porous medium. Damseh and Shannak [19]  
Visco-elastic fluid flow past an infinite vertical porous plate in the presence of first order chemical reaction.   
Sivaraj and  Rushi Kumar [20] studied MHD mixed convective flow of viscoelastic and viscous fluids in a 
vertical porous channel. Misra et al [21] studied Hydromagnetic flow and heat transfer of a second-grade 
viscoelastic fluid in a channel with oscillatory stretching walls: application to the dynamics of blood flow also 
Choudhury and Das [22]  analyzed visco-elastic MHD free convective flow through porous media in presence 
of radiation and chemical reaction with heat and mass transfer. Recently Gorla  et al [23] analyzed the effect of 
unsteady heat and mass transfer in MHD viscoelastic fluid flow through porous medium between two inclined 
porous parallel plates with soret effect and G-Jitter force. 
 
The objective of the prÅÓÅÎÔ ÐÁÐÅÒ ÉÓ ÔÏ ÓÔÕÄÙ ÁÎ ÕÎÓÔÅÁÄÙ -($ ÃÏÎÖÅÃÔÉÖÅ ÆÌÏ× ÏÆ Á ÖÉÓÃÏÅÌÁÓÔÉÃ ɉ7ÁÌÔÅÒȭÓ 
liquid -B) fluid through a porous medium filled in a vertical channel in the presence of heat source. Constant 
injection and suction is applied at the left and the right inf inite porous plates respectively. A uniform magnetic 
field is applied along the axis perpendicular to the planes of the plates. The magnetic Reynolds number is 
assumed very small so that the induced magnetic field is neglected. The temperature difference between the 
plates of the channel is sufficiently high to induce heat radiation. An exact solution of the partial differential 
equations governing the flow problem is obtained and the effects of various flow parameters on the velocity 
field and the skin fri ction are discussed in the last section of the paper with the help of figures.The object of 
ÔÈÅ ÐÒÅÓÅÎÔ ÐÁÐÅÒ ÉÓ ÔÏ ÓÔÕÄÙ ÁÎ ÕÎÓÔÅÁÄÙ -($ ÃÏÎÖÅÃÔÉÖÅ ÆÌÏ× ÏÆ Á ÖÉÓÃÏÅÌÁÓÔÉÃ ɉ7ÁÌÔÅÒȭÓ ÌÉÑÕÉÄ-B) fluid 
through a porous medium filled in a vertical channel in th e presence of heat source. Constant injection and 
suction is applied at the left and the right infinite porous plates respectively. A uniform magnetic field is 
applied along the axis perpendicular to the planes of the plates. The magnetic Reynolds number is assumed 
very small so that the induced magnetic field is neglected. The temperature difference between the plates of 
the channel is sufficiently high to induce heat radiation. An exact solution of the partial differential equations 
governing the flow problem is obtained and the effects of various flow parameters on the velocity field and the 
skin friction are discussed in the last section of the paper with the help of figures.  
 
Mathematical Analysis: An oscillatory MHD convective flow of a Walters liquid  Model ὄᴂ (viscoelastic), 
incompressible and electrically conducting fluid through a porous medium in a vertical channel is considered. 
The constitutive equations for the rheological equation of state for the viscoelastic fluid (Walters liquid Model 
ὄᴂ) are 
ὴ ὴὫ ὴᶻ                                                                                                                             (1) 

ὴᶻ ς᷿ ὸ ὸᶻ Ὡ ὸᶻὨὸᶻ .                                                                                                                 (2) 

Where in ὸ ὸᶻ ᷿
ᶻȾ , and ὔ† is distribution function of relaxation time  †Ȣ In the above 

equation ὴ  is the stress tensor, ὴ is an arbitrary isotropic pressure,  Ὣ is the metric tensor of a fixed co-

ordinate system ὼὭ and Ὡ  is is the rate of strain tensor. It was shown by Walter (1964) that equation (2) can 

be put in the following generalized form which is valid for all types of motion and stress 

ὴᶻ ὼȟὸ ς᷿ ὸ ὸᶻ ᶻ ᶻὩ ὼᶻȟὸᶻὨὸᶻ.                 (3) 

Wherein ὼᶻ  is the position at times ὸᶻof the element which is instantaneously at the point ὼ at the time t. The 
ÆÌÕÉÄ ×ÉÔÈ ÔÈÅ ÅÑÕÁÔÉÏÎ ɉΫɊ ÔÏ ɉέɊ ÈÁÓ ÂÅÅÎ ÄÅÓÉÇÎÁÔÅÄ ÁÓ ÔÈÅ ÌÉÑÕÉÄ "ȭȢ )Î ÔÈÅ ÃÁÓÅ ÏÆ ÔÈÅ ÌÉÑÕÉÄ ×ÉÔÈ ÓÈÏÒÔ 
memories i.e. short relaxation times, the above equation can be written in the following simplified form: 
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ὴᶻ ὼȟὸ ς–Ὡ ςὯ  ,                                                                                                                         

(4) 

where – ᷿ ὔ†Ὠ† is limiting viscosity at the small rates of shear, Ὧ ᷿ †ὔ†Ὠ† and  denotes the 

convected time derivative. 
 
The insulated plates of the channel are at distance 'Ὠᴂ apart. The porous walls of the vertical channel are lying 

in the ώᶻ  planes and the fluid is injected through the left porous plate with constant velocity (V) and 

simultaneously sucked through the other plate with the same velocity (V). The ὼᶻ- axis is oriented vertically 
upwards along the centreline of the channel. The ώᶻ-axis taken perpendicular to the planes of the plates and a 

transverse magnetic field of uniform strength ὄᴆ πȟὄȟπ is applied along this axis. The non-uniform 
temperature of the plate at ώᶻ  is assumed to be varying span-wise cosinusoidally in space and time both 

as Ὕᶻώᶻȟᾀᶻȟὸᶻ Ὕ Ὕ Ὕ ÃÏÓ
ᶻ

ᶻᶻ .                                                                                                   (5) 

 
Since the plates of the channel are of infinite extent in the ὼᶻdirection, therefore, all the physical quantities 
except the pressure are independent of ὼᶻ. All fluid properties are assumed constant except variation of density 

with temperature only in the body force term. The equation of continuity Ȣɳὠᴆ π for the constant 

injection/sucti on at the channel plates integrates to ὺz  ὠ where  ὠᴆ όᶻȟὺᶻȟπ represents the velocity 
components in the directions ὼᶻȟώᶻȟᾀᶻ  respectively.  The physical configuration of the problem is shown in 
Figs. 1a & 1b.   
 

  
Fig.1a. Hot Vertical Channel  Fig.1b. Span-Wise Cosinusoidal Plate 

Temperature  
 
&ÏÌÌÏ×ÉÎÇ !ÔÔÉÁ ÁÎÄ %×ÉÓ ɏάήɐ ÁÎÄ +ÕÍÁÒ ÁÎÄ #ÈÁÎÄ ɏάίɐ ÁÎÄ ÔÁËÉÎÇ ÉÎÔÏ ÁÃÃÏÕÎÔ ÔÈÅ ÕÓÕÁÌ "ÏÕÓÓÉÎÓÑȭÓ 
approximation the magnetohydrodynamic (MHD) mixed convection flow in the vertic al channel is governed 
by the following momentum and energy differential equations:     
ᶻ

ᶻ ὠ
ᶻ

ᶻ

ᶻ

ᶻ ᶻόᶯ ᶯ
ᶻ

ᶻ όᶻ ᶻό
ᶻ ὫὝᶻ Ὕ ,                           (6) 

”ὧ
ᶻ

ᶻ ὠ
ᶻ

ᶻ Ὧɳ Ὕᶻ
ᶻ

ᶻ ὗᶻὝᶻ Ὕ ,                                                     (7) 

where  ɳ . 

 
The heat flux due to radiation and for an optically thick gray gas is expressed by using Rosseland 
approximation as 

ήᶻ
ᶻ

ᶻ

ᶻ

,z                                                         (8) 

We assume that the temperature differences within the flow are sufficiently small such that Ὕz  may be 
expanding in Taylor series about Ὕ. Neglecting higher order terms and retaining first term only, we obtain 
Ὕᶻ ḙτὝὝᶻ σὝ .                                            (9) 

            ὢᶻ 
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Substituting (9) into (8) and simplifying, we obtain  
ᶻ

ᶻ

ᶻ

ᶻ

ᶻ

ᶻ .                                           (10) 

 
The substitution of equation (10) into the energy equation (7) for the heat due to radiation, we get 

”ὧ
ᶻ

ᶻ ὠ
ᶻ

ᶻ Ὧɳ Ὕᶻ
ᶻ

ᶻ

ᶻ

ᶻ ὗᶻὝᶻ Ὕ ,                                                     (11) 

The boundary conditions for the problem are 
ώᶻ ȡ     όᶻ πȟ   Ὕᶻ Ὕ,                                                        (12) 

ώᶻ ȡ     όᶻ πȟὝᶻ Ὕ Ὕ Ὕ ÃÏÓ
ᶻ

ᶻᶻ .                                                     (13) 

 
Introducing the following non -dimensional quantities  

ὼȟώȟᾀ
ȟz ȟz z

ȟὸ ᶻὸᶻȟ
ᶻ

 ό
ᶻ

 ȟ—
ᶻ

ȟὴ
ᶻ

ȟ                                                                   (14) 

into equations (6) and (11) we get 

 ‗ ‗ ᶯό ɳ ὓ ὑ ό Ὃὶ — ,                                                                      (15) 

ὖὶ ‗ὖὶ ᶯ— Ὓ— ,                                                                                                              (16) 

where   is the viscoelastic parameter,     ‗  is the injection/suction parameter,  

Ὃὶ   is the Grashof number, ὓ ὄὨ   is the Hartmann number, 

ὑ
ᶻ

 is the permeability of the porous medium, ὖὶ    is the Prandtl number, 

ὔ
ᶻ

ᶻ   is the radiation parameter, Ὓ
ᶻ

 is the heat source. 

 
The boundary conditions in the dimensionless form become 

ώ ȡ ό πȟ— πȟ                                                            (17) 

ώ ȡ ό πȟ— ÃÏÓ“ᾀ ὸ.                                                       (18) 

 
Solution of the Problem: In order to obtain the solution of this flow in the porous channel when the fluid is 
acted upon by an unsteady periodic drop in pressure, we assume the solution in complex variable notations as 

όώȟᾀȟὸ ό ώὩ ȟ—ώȟᾀȟὸ — ώὩ ȟ ὃὩ ȟ                                                    (19) 

where ὃ is a constant. The real part of the solution will have physical significance. 
The boundary conditions (17) and (18) can also be written in complex notations as 

ώ ȡ ό πȟ— πȟ                                                          (20) 

ώ ȡ ό πȟ— Ὡ  .                                                      (21) 

 
Substituting equation (19) into equations (15) and (16) we obtain following equations 
ρ Ὥό ‗ό “ ὓ ὑ Ὥρ “ ό ‗ὃ Ὃὶ—,                                                 (22) 

ρ — ‗ὖὶ— “ Ὓ Ὥ—ὖὶ‗ π,                                          (23) 

where the primes in these ordinary differential equations denote differentiation with respect to y.  
 
The boundary conditions (20) and (21) reduce to 
  ώ ȡ  ό πȟ    — πȟ                             (24) 

ώ ȡ  ό πȟ    — ρ .                                           (25) 

The solution of equation (22) for the velocity field under the boundary conditions (24) and (25) is obtained as 

u ώȟᾀȟὸ

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợ ρ

ừ
Ử
Ừ

Ử
ứ Ὡ Ὡ

Ὡ Ὡ Ὡ
ữ
Ử
Ữ

Ử
ử

Ứ
ủ
ủ
ủ
ủ
ủ
Ủ

Ὡ                                              (26) 
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where ὰ “ ὓ ὑ Ὥρ “       ὅ ρ Ὥὶ ‗ὶὰ,ὅ ρ Ὥί ‗ί

ὰ,     ά  ,   ὲ  , 

ὶ ,      ί  . 

 
Similarly, the solution of equation (23) for the temperature field under the boundary conditions (24) and (25) is 
obtained as 

ʊώȟᾀȟὸ Ὡ  .                                                       (27) 

The amplitude is ȿ&ȿ & & and the phase angle ʒ ÔÁÎ ,                                             (28) 

wherein    

Ὂ Ὂ Ὥ Ὂ

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợ Ὡ

ừ
Ử
Ừ

Ử
ứ ά ὲὩ

άὩ ὲὩ Ὡ
ữ
Ử
Ữ

Ử
ử

Ứ
ủ
ủ
ủ
ủ
ủ
ủ
Ủ

                                                     (29) 

 
Similarity, we can get the Nusselt number, ὔό, the heat transfer coefficient in terms of its amplitude ȿὌȿ and 
the phase angle  from equation (27) for the temperature field as 
ὔό ȿὌȿ ÃÏÓ“ᾀ ὸ  ,                                          (30)  

With  ȿὌȿ Ὄ Ὥ Ὄ
 

,                                         (31)   

where the  amplitude ȿὌȿ and the phase angle  of the rate of heat transfer are given as 

ȿὌȿ Ὄ Ὄȟ              ÔÁÎ   .                                                       (32) 

 
Results and Discussion: An exact solution of an unsteady MHD convective flow of Walters liquid Model Bǋ 
(viscoelastic) through porous medium in a vertical porous channel is obtained in the presence of a heat source. 
The plate temperature of the channel varies span-wise cosinusoidally. The two porous plates are subjected to 
constant injection and suction. It is also assumed that the conducting fluid is optically-thick gray gas, 
absorbing/ emitting radiation and non -scattering. The solution so obtained is evaluated numerically for 
different sets of values of the parameters involved in the flow field. In order to have a better insight of the 
influence of the parameters on the velocity and temperature fields these numerical values are then illustrated 
through figures. The influence of each of the parameters on the physical quantities like the velocity, the 
temperature, the amplitude and the phase of the skin-friction and rate of heat transfer are depicted through 
figures.  
 
The effects of different parameters on the velocity field όώȟᾀȟὸ are shown in Figure 2 Different curves in this 
figure represent the sets of various values of the parameters listed in Table 1. This figure clearly shows that the 
velocity is maximum in the middle  of the channel which leads to parabolic velocity profiles in the channel as 
expected. curve I  corresponds to the case of Newtonian fluid. Remaining curves are compared with the curve 
II  to assess the influence of each parameter on the velocity. This figure clearly shows that curves  IV, V, VII 
and XI lie above the curve II  which means that the velocity increases with the increase of injection/suction 
parameter ‗ȟ Grashof number Ὃὶ, permeability of the porous medium K and favorable pressure gradient ὃ 
respectively. There is a sharp rise in the velocity with the increase of the injection/suction parameter  ‗ . The 
increase of velocity with the increase of the Grashof number Ὃὶ physically means that the enhancement of the 
buoyancy force leads to increase of the velocity όώȟᾀȟὸȢ The increase of velocity with the increase of 
permeability of the porous medium indicates that the resistance posed by the porous medium reduces as the 
permeability of the medium increases because of which the velocity increases. As expected the larger favorable 
pressure gradient in the channel leads to faster flow, hence, velocity increases. 
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&ÉÇȢ άȢ 6ÅÌÏÃÉÔÙ 0ÒÏÆÉÌÅÓ ÆÏÒ ÚКΪȢί ÁÎÄ ÔКʓȾά 

 

Table1. Sets of Parameter Values Plotted 
in Fig. 2 

  ʅ     ʎ    Gr  M   K     Pr    N    S    A  ʝ  Curves 
0      0.5   1    2    0.2   0.7    1   0.5   2   1    I  
0.2   0.5   1    2    0.2   0.7    1   0.5   2   1    II  
0.5   0.5   1    2    0.2   0.7    1   0.5   2   1    III 
0.2   0.8   1    2    0.2   0.7    1   0.5   2   1    IV 
0.2   0.5   2   2    0.2   0.7     1   0.5  2    1    V 
0.2   0.5   1    4    0.2   0.7    1   0.5   2   1    VI 
0.2   0.5   1    2    1.0    0.7    1   0.5   2   1    VII 
0.2   0.5   1    2    0.2   7.0    1   0.5   2   1    VIII  
0.2   0.5   1    2    0.2   0.7    5  0.5   2   1     IX 
0.2   0.5   1    2    0.2   0.7    1   5.0   2   1     X 
0.2   0.5   1    2    0.2   0.7    1   0.5   3   1     XI 
0.2   0.5   1    2    0.2   0.7    1   0.5   2   5    II 

 
The effects of other parameters like viscoelastic parameter ȟ Hartmann number ὓȟ Prandtl number ὖ, 
radiation parameter ὔȟ heat source Ὓ and frequency of oscillations ,are represented by curves III, VI, VIII, IX  
X and XII respectively. From this figure it can be easily observed that these curves lie below the curve II. This 
means that the flow velocity decreases with the increase of these parameters. The flow retards due to increases 
viscoelasticity of the fluid. Lorentz force which is introduced due to the application of the transverse magnetic 
field retards the velocity. This force gives a dragging effect on the flow. The two values of the Prandtl number 
ὖ=0.7 and ὖ=7 are chosen to represent most common fluids air and water respectively. It is evident that the 
velocity is less in water than in air. Since the Prandtl number gives the relative importance of viscous 
dissipation to the thermal dissipation so for larger Prandtl number viscous dissipation is predominant and due 
to this velocity decreases. The increase of radiation N, heat source S and the frequency lead to a decrease in  
velocity. 
 
The variation of the amplitude ȿ&ȿ ÁÎÄ ÔÈÅ ÐÈÁÓÅ ÁÎÇÌÅ ʙ ÏÆ ÔÈÅ ÓËÉÎ-ÆÒÉÃÔÉÏÎ ÁÇÁÉÎÓÔ ʝ ÁÒÅ ÓÈÏ×Î in Fig.3 and 4 
respectively with the increase of different parameters like the viscoelastic parameter ȟ injection/suction 
parameter ‗, Grashof number Ὃὶ, Hartmann number ὓ, permeability of the porous medium ὑȟ Prandtl 
number ὖ, radiation parameter ὔ, heat source parameter Ὓ and the pressure gradient is presented. It is 
obvious from figure 3 that for any set of parameters listed in Table 2 the amplitude goes on decreasing with 
increasing frequency of oscillationsThe decrease is sharp in ȿ&ȿ for small oscillations but theÎ ÒÅÄÕÃÅÓ ÁÓ ʝ . 
increases further. Comparing curves III, IV, VI and X with the curve I  reveals that the skin-friction amplitude 
increases with the increase of injection/suction parameter ‗, Grashof number Ὃὶȟ permeability of the porous 
medium ὑ and the pressure gradient ὃ. It is true physically also because the increase in these parameters 
results into velocity increase which consequently leads to the enhancement of shear stress. However, the 
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increase in viscoelastic parameter  , Hartmann number ὓȟ Prandtl number ὖ, the radiation parameter ὔ and 
heat source Ὓ represented by curves II, V, VII, VIII and IX when compared with curve I attribute towards the 
decrease in the amplitude of the skin-friction.  
 

 
Fig. 3. Amplitude  Of Skin Friction  

 
 

 
Fig.4. Phase of Skin Friction  

 
The behavior of the phase angle ʒ of the skin-friction † is shown in Figure 4 for different values of various sets 
of flow parameters.  From this figure it is evident that there is always a phase lead because its values computed 
numerically remain positive throughout for any set of values of the flow parameters. There is almost an 
exponential increase of • with increasing frequency for all sets of values considered. We notice by  
comparing curves II, III, IV, VI, VII and VIII with curve I  that the phase angle increases with increasing 
viscoelastic parameter , injection/suction parameter ‗ȟ Grashof number Ὃὶ, permeability of the porous 
medium ὑ, Prandtl number ὖ and radiation parameter ὔ. However, the phase lead decreases with the increase 
of Hartmann number ὓ, heat source Ὓ and pressure gradient ὃ as is indicated by the comparison of curves V, 
IX and X with curve I. 
 
The variation of the temperature with the injection/suction parameter ‗ȟ Prandtl number ὖ, radiation 
parameter ὔ, heat source Ὓ and the frequency of oscillations are shown in Fig.5. It is observed from this  
figure that the temperature decreases with the increase of either of these parameters.  
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&ÉÇȢ ίȢ 4ÅÍÐÅÒÁÔÕÒÅ 0ÒÏÆÉÌÅÓ ÆÏÒ :КΪȢί ÁÎÄ 4КɯȾά 

 
The amplitude ȿὌȿ and the phase angle of the rate of heat transfer against the frequency of oscillations are  
illustrated in Fig. 6 and Fig.7 respectively. It is evident from Fig. 6 that the amplitude ȿὌȿ decreases with the 
increase of injection/suction parameter ‗ȟ Prandtl number ὖ, the radiation parameter ὔ and heat source Ὓ. 
The amplitude in the case of water (ὖ КαɊ ÄÅÃÒÅÁÓÅÓ ÒÁÐÉÄÌÙ ×ÉÔÈ ÉÎÃÒÅÁÓÉÎÇ ʝ ÁÎÄ ÂÅÃÏÍÅÓ ÎÅÇÌÉÇÉÂÌÅ ÆÏÒ ÌÁÒÇÅ 
ÖÁÌÕÅÓ ÆÒÅÑÕÅÎÃÙ ÏÆ ÏÓÃÉÌÌÁÔÉÏÎÓ ʝȢ &ÉÇȢα ÓÈÏ×Ó ÔÈÁÔ ÔÈÅÒÅ ÁÌ×ÁÙÓ ÒÅÍÁÉÎÓ Á ÐÈase lead with the increase of 
ÉÎÊÅÃÔÉÏÎȾÓÕÃÔÉÏÎ ÐÁÒÁÍÅÔÅÒ ʎȟ ÔÈÅ ÒÁÄÉÁÔÉÏÎ ÐÁÒÁÍÅÔÅÒ . ÁÎÄ ÈÅÁÔ ÓÏÕÒÃÅ 3 ÁÎÄ ÔÈÉÓ ÐÈÁÓÅ ÌÅÁÄ ÉÎÃÒÅÁÓÅÓ 
ÌÉÎÅÁÒÌÙ ÁÓ ʝ ÇÏÅÓ ÏÎ ÉÎÃÒÅÁÓÉÎÇȢ )Ô ÉÓ ÁÌÓÏ ÎÏÔÉÃÅ ÆÒÏÍ ÔÈÉÓ ÆÉÇÕÒÅ ÔÈÁÔ ×ÉÔÈ ÔÈÅ ÉÎÃÒÅÁÓÅ ÏÆ 0ÒÁÎÄÔÌ ÎÕÍÂÅÒ ὖ 
the phase starts oscillating between the phase lead and the phase lag as the frequency increases. Fig.8 gives a  
ÃÌÅÁÒ ÃÕÔ ÐÉÃÔÕÒÅ ÏÆ ÖÁÒÉÏÕÓ ÐÁÒÁÍÅÔÅÒÓ ÌÉËÅ ʎȟ ὔ and Ὓ are also begin to oscillate between the phase lead and 
the phase lag as the frequency .increases  
 

 
Fig. 6. Amplitude of Nusselt Number  
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Fig. 7. Phase Angle of Nusselt Number  

 
Conclusions: The following conclusions are made from the above discussion: 

¶ The increase of buoyancy force leads to increase of the velocity όώȟᾀȟὸȢ  

¶ The increase of velocity with the increase of permeability of the porous medium indicates that the 
resistance posed by the porous medium reduces as the permeability of the medium increases because of 
which the velocity increases. 

¶ The velocity also increases with the increase of injection/suction parameter ‗ and favorable pressure 
gradient ὃ. 

¶ The flow retards as the fluid viscoelasticity increases. 

¶ Lorentz force which is intr oduced due to the application of the transverse magnetic field retards the 
velocity. 

¶ The increase of Prandtl number, radiation ὔ and the frequency .leads to a decrease in velocity  

¶ The temperature decreases with the increase of either of the parameters involved. 

¶ The amplitude of skin friction increases due to the increase of all those parameters because of which flow 
accelerates.  

¶ It is true physically also because the increase in these parameters results into velocity increase which 
consequently leads to the enhancement of shear stress.  

¶ However, the increase in Hartmann number ὓ, Prandtl number ὖ or the radiation parameter ὔ, attribute 
towards the decrease in the amplitude of the skin-friction.  

¶ There is always a phase lead of the skin friction. 

¶ The amplitude of rate of heat transfer reduces due to the increase of all parameters involved. 

¶  For increasing ‗ȟὔ and Ὓ there is always a phase lead of rate of heat transfer and remains linear over the 
ÖÁÌÕÅÓ ÏÆ ʝ ÃÏÎÓÉÄÅÒÅÄȢ 

¶ However, for increasing Prandtl number phase starts oscillating between the phase lead and the phase lag 
ÁÓ ÔÈÅ ÆÒÅÑÕÅÎÃÙ ʝ ÉÎÃÒÅÁÓÅÓȢ  

 
Nomenclature:  
A -Constant 
B0  -Uniform Magnetic Field  
Cp          -Specific Heat At Constant Pressure  
D        -Distance Between Plates 
ȿὊȿ         -Amplitude Of Skin -Friction  
G  -Acceleration Due To Gravity  
Ὃὶ  -Grashof Number  
ȿὌȿ -Amplitude Of Rate Of Heat Transfer 
Ὧ  -Thermal Conductivity  
Ὧz  - The Mean Absorption Coefficient 
ὑ -Porous Medium Permeability  

 
M -Hartmann Number 
ὔ  -Radiation Parameter 
ὖ  z -Pressure 
ὖὶ -Prandtl Number 
ὗᶻ

             
 -Heat Absorption Coefficient 

ήz    -Radiative Heat Flux 
Ὓ -Heat Source Parameter  
ὸ -Time 
Ὕᶻ           -Fluid Temperature 
ὝȟὝ      -Constant Temperatures                         
όz           -Fluid Velocity In X

*
 -Direction  
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ὠ             -Injection/Suction Velocity  
όȟὺȟύ    -Velocity Components Along ὢȟὣȟ   ὤ-Axis 
ὼȟώȟᾀ     -Variables Along ὢȟὣȟὤ Directions 
Greek Symbols:  
        -Coefficient Of Thermal Expansion 
„z   -Stefan Boltzmann Constant        
„ -Electrical Conductivity  
” -Fluid Density  
ɫ -Viscosity 

ytisocsiV fO tneiciffeoC citameniK-             
yticitsaleocsiV-  
Frequency Of Oscillations-  
• -Phase Angle Of Skin-Friction  
 -Phase Angle Of Heat Transfer 
† -Skin-Friction At The Left Wall  
— -Mean Non-Dimensional Temperature 
Superscripts:  
*             -Superscript For Dimensional Quantities 
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Abstract: We consider mixed initial boundary value problem for the following partial differential equation  
µ ό

µ ὸ

µ 

µ ὼ
ÌÏÇὦ ὥὩ π 

We single out these type of equations as Lax type equations because Lax first considered these type of 
equations where finite difference scheme applied to such an equation gets linearized and establishing 
convergence gets simplified. Hypothesis for writing explicit formula for solution of mixed initial boundary 
value problem for Lax equation using Hamilton Jacoby theory is not satisfied. Despite of this we prove that 
Finite Difference Scheme converges to the explicit formula given by the Hamilton Jacoby theory. 

 
Introduction: We consider partial differential equation as follows 

                                                     
µ 

µ 

µ 

µ 
ÌÏÇὦ ὥὩ π                                      (1.1) 

όὼȟπ  ό ὼ 
όπȟὸ  lὸ 

Where  ὥȟὦ πȢ "ÅÃÁÕÓÅ ÏÆ ÔÈÉÓ ÃÏÎÄÉÔÉÏÎ ÓÏÌÕÔÉÏÎÓ ÄÏÅÓÎȭÔ ÁÄÍÉÔ ÂÏÕÎÄÁÒÙ ÌÁÙÅÒȢ Explicit formula in the case 

of f (u) convex function of its argument and satisfying additional condition that   ¤  is discussed in 

famous paper by Conway and Hopf [3].  It is stressed in that paper that with not all the forms of l(t) that 

explicit solution is possible and boundary condition must satisfy certain conditions. For example l(t) should 
satisfy that ‗ᴂὸ must take values in the range of f(u) in order that explicit formula should exist for mixed 
initial boundary value problem with flux function f(u). This condition is not satisfied by equation (1.1) and 
hence in this case it becomes essential that we write explicit formula and prove that this explicit formula is 
indeed a solution to this mixed initial boundary condition. The boundary condition is prescribed in the sense 
of Bardos, Leroux and Nedelec[7] so that existence of solution is assured.  
 
Explicit Formula for the Solution of Lax Equation: For each (x, y, t),  x > 0; y > 0; t > 0, C(x, y, t) denotes the 

class of paths  b in z - s plane 
D = {(z, s) : z > 0,  s > 0} 
Each path connecting the point (y, 0) to (x, t) and is of the form 

z = b(s) 

where b is a piecewise linear function with one straight line or many straight lines having slopes of value lying 
between zero and one. Without loss of generality we can assume that this piecewise linear function contains 
either single piece of straight line joining (y,0) to (x, t) or pair of straight lines joining first (0, 0) joining to (0, 

s) and then (0, s) joining to (x, t). We assume that ό ὼᶰὒ πȟЊ and l(t) be a boundary condition which we 

assume to be a constant l to begin with.  
 
Theorem 1: For each fixed x > 0, t > 0 define 

Ὗὼȟὸ
bÍ ȟȟ

² 

᷿ όuᾀὨᾀ᷿ ¥lίὨί
Ƞ b

         (2.2)          

        ¥ᶻ
Ὠb

Ὠί
Ὠί

Ƞ b ¸

 

U(x; t) is a solution of mixed initial boundary value problem for scalar conservation law (1.1) 
Complete article is devoted to prove this theorem. We first consider constant boundary data. For constant 
boundary data, by following Joseph and Gowda [6] we introduce finite difference scheme and prove that the 
solution of this finite difference scheme converges to U(x; t) stated in the theorem. Subsequently we prove 
theorem for non constant boundary data by again following Joseph and Gowda [6] . we subject our scalar 
conservation law to the following finite difference scheme. 
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όὼȟὸ Ў όὼȟὸ Ὢόὼȟὸ Ὢόὼ Ў   (2.3) 

with the initial value όὼȟπ ό ὼ and boundary condition u(0, t) = l(t) and where D is increment in x as 
well as in t. It is in the nature of the conservation law we are studying that transformation can be found which 
linearizes the scheme which we will do now. 
 

                                               ό ό  Ὢό  Ὢό                                                  (2.3) 
 

ό ό Ὢό Ὢό  

Ὗ ό  

 

Ὗ  ό  Ὢ ό  
 

Ὗ  ό  Ὢ ό Ὗ  
 

Let Ὗ  = log ὠ  then it follows that Ὗ Ὗ ÌÏÇ  

ÌÏÇὠ ÌÏÇὠ ÌÏÇ ὦ ὥὩ                                                      (2.4) 
 
which implies that  

ὠ ὦὠ ὥὠ                                        (2.5) 
 
which is linear in ὠ  and  ὠ   Thus the transformation from  Ὗ   to  ὠ   linearizes the difference scheme. 
We have l ό  the following formula  
when n < k 

ὠ Ὡlὠ  
We have for ὠ   the following formula  
when n < k 

ὠ  В ὦὥ ὠ                                                          (2.6) 

and when n > k 
 

ὠ  В ὦ ὥὠ В ὦ ὥὠ (2.7) 

 

We now calculate the expression to which  ὠ   converges when  D   0. We begin with case n < k. 
 
Case 1:▪ ▓ 

ὠ  
ὲ

Ὥ
ὦὥ ὠ  

Let  Ὧ ὲ ὰ Ὦ. Then  ὰ π Ὦ Ὧ ὲ and ὰ ὲ Ὦ Ὧ Above equation then becomes 
 

ὠ  В ὥ ὦ ὠ   

 

Denote j
th

 summand in this expression by Fj.  Sterling asymptotic formula for n! is given by 

ὲȦ º Ѝςp Ὡ ὲ  
 
By subjecting  to Sterlings asymptotic formula gives 
 

º Ⱦ
  

Ⱦ
Ѝp

                                      (2.8) 

Multiply numerator and denominator by D   and rearranging these terms we get 
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F 
Ўὲ ὦD DὥЎ ȾЎ

Ὧ ὮЎ  ὲ Ὧ ὮЎ
 

 x
p 

                                  (2.9) 

Suppose this asymptotic expression for Fj takes its maximum at n = N; k = K and j = J provided nD, lD and kD 

remain fixed in the limit as D  0. Note that Fj can be written 
as follows. 

F 
Ὡ
Ў Ў

Ⱦ   

Ў  Ὡ
Ў

Ў   ὩȾ   

Ὡ
Ў  Ў

Ў   Ὡ
Ў   Ў

Ў

 

ὼ

Ў  
Ў

Ⱦ                                                                                                                 (2.10) 

Note that the term  Ὡ
Ў  Ў

Ў   achieves at j = J; k = K and n = N. The term    Ὡ
Ў  Ў

Ў   never becomes 

positive except at j = J; k = K and n = N it becomes 1. Therefore as D is  made to approach zero, power of e 

becomes negative invite and    approaches     Ὡ
Ў  Ў

Ў    zero and does not contribute to the sum. Same 

thing happens with other terms and in the limit a sD  0.  ὠ  then becomes the following. 
 
  ὠ  ÍÁØF                                                                          (2.11) 

D log ὠ  therefore becomes 
 

ЎÌÏÇὠ  ÍÁØЎὲÌÏÇD ὲ  DὯ ὰÌÏÇ DὯ ὰ 

 

Dὲ Ὧ ὰÌÏÇD ὲ Ὧ ὰ  

 
Dὲ Ὧ ὰÌÏÇὦ  DὯ ὰÌÏÇὥ 

 

DÌÏÇ
ὲ

ςpὯ ὰὲ Ὧ ὰ
 DÌÏÇὠ  

 

We subject this expression to the limit D  0 . We have in this limit Dn = t, D k = x and Dt  y.  With this the 
above expression, which we denote by A(x, t, y), becomes 
 
A(x, t, y) = t log t - (x - y) log(x -y)  - (t - x + y) log(t - x + y) 
 

Ô  Ø  Ù ÌÏÇ Â  Ø  Ù ÌÏÇ Á ᷿ό ὼὨὼ
¤

                                                          (2.12) 

where we have used that in the limit  D  0 the following term becomes zero. 
 

DÌÏÇ
ὲ

ςpὯ ὰὲ Ὧ ὰ
 

Case 2: n > k 
                                ὠ Y  W                                                       (2.13) 
Where 

Y  
ὲ
Ὥ
ὦ ὥὠ  

 

W
ὲ Ὥ ὰ
Ὧ ὰ

ὦ ὥὠ 

Individual term in  Y   is denoted by Gi. Transformation i + 1 = k - j and then j + 1 = l 

brings Gi 
  
to  Gi

  
where
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G
ὲ
Ὧ Ὥ

ὦ ὥ ὠ  
 

Above j varies from 0 to k -  and l varies from 1 to k. Applying Sterling asymptotic formula and rearranging the 
terms we get 
 

G
Ў  Ў Ў ȾЎЎ ȾЎ

Ѝp Ў  Ў

 ὠ                                      (2.14) 

 

Suppose this asymptotic expression for Gi.  takes its maximum at n = N, k = K and l = L provided nD,  kD and l D 

remain fixed in the limit D  0. After some rearrangement note 

that log Gi. can be written as follows. 
 

ÌÏÇ G

Ў Ў
Ⱦ   

Ў  
Ў

Ў   
Ў

Ў Ⱦ   

Ў  
Ў   

Ў   
Ў   p

                            (2.15) 

 

Note that the term  Ὡ
Ў  Ў

Ў    achieves its maximum at n = N, k = K and l = L and the 

term  Ὡ
Ў  Ў

Ў    never becomes positive except at n = N, k = K and l = L where it 

becomes 1. Therefore as D  is made to approach zero, power of e becomes negative infinite and the term itself 

becomes zero. Thus as D  0 we get the following. 
                                  Y  ÍÁØɜ            (2.16) 
Thus we get 

ЎÌÏÇY ЎὲÌÏÇ Ўὲ ЎὯ ὰÌÏÇ ЎὯ ὰ  

 

   Ў ὲ Ὧ ὰÌÏÇ Ў ὲ Ὧ ὰ  
 

Ўὲ Ὧ ὰÌÏÇὦ  Ў Ὧ ὰÌÏÇὥ                      (2.17) 

ЎÌÏÇ
ὲ

ςpὯ ὰὲ Ὧ ὰ
 Ў ÌÏÇὠ  

 

We will now subject this expression to the limit D  0  In this limit Dn = t,  Dk = x and Dl = y and we again 
denote this expression by A(x, t, y) 
A(x, t, y) = t log t - (x - y) log(x - y) - (t - x + y) log (t - x + y) 

Ô  Ø  Ù ÌÏÇ Â  Ø  Ù ÌÏÇ Á ᷿ό ὼὨὼ
¤

                                                   (2.18) 

where we have used that in the limit  D  0   the following term becomes zero. 
 

ЎÌÏÇ
ὲ

ςpὯ ὰὲ Ὧ ὰ
 

Now we consider W    

W В ὲ Ὥ ὰ
Ὧ ὰ

ὦ ὥὠ                            (2.19) 

by denoting each term in this expression by Li , we get on the same lines as we did with  Y   
W  ÍÁØL (2.20) 
In this case we have the following 

D ÌÏÇ W Ўὲ Ὥ ὰÌÏÇ Ўὲ Ὥ ὰ  

ЎὯ ὰÌÏÇὯ ὰ                         (2.21) 
Ў ὲ Ὥ ὰÌÏÇ Ўὲ Ὥ Ὧ  

Ўὲ Ὥ ὯÌÏÇὦ  ЎὯÌÏÇὥ  ЎÌÏÇὠ  
 

Let's introduce the following Dn = t, D(k-l) = x and D (i + 1) = s. With these specifications 
the above expression, which we denote by B(x, t, s), becomes 
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B(x, t, s) = (t - s) log (t - s) - x log x - (t - x - s) log (t - x - s) 

ὸ ɀί ὼ ÌÏÇ ὦ  ί ÌÏÇ Á ᷿ὪlὨί                                                (2.22) 

Where we have made use of the following relation 

ὠ Ὢlὠ                       (2.23) 

and   ЎÌÏÇὠ π as D 0. Let A(x, t, y) be denoted as f(y) to emphasize dependence on y. f(y)  takes 

maximum value at ώ ὼ ὸ. With this value of y, f becomes t log(a + b) and we prove that as  D  0, 

ÌÏÇὠ  Ὗ ὼȟὸ where U(x; t) is as stated in the theorem.  Let l(t) be a step functions follows. 
 

l(t) = lj for t j-1 < t < tj, j = 1, 2..k.  0 < t1 < t2 Н ȣ Н Ôk < T 
 

Here lj are constants. We take initial time as tj, and get for tj < t  < tj+1 the following  
 
ÌÉÍ
Dπ

ÌÏÇὠ
Í ȟȟ
²

Ὗ ώ ᷿ ὪlίὨί
ȡb

᷿ Ὢᶻ
b
Ὠί

ȡb ¸
          (2.23) 

where Uj(yj) = U(yj ; tj) Here C(x; yj ; t; tj) denote the class of the paths which connect (yj ; tj) to point (x; t) 
with slope of value less than or equal to one. Thus we get 
ÌÉÍ
Dπ

ÌÏÇὠ
Í ȟȟ
²

Ὗ ώ ᷿ ὪlίὨί
ȡb

᷿ Ὢᶻ
b
Ὠί

ȡb ¸
           (2.24) 

Now we claim that maximum is achieved for some bÍ C(x, y, t).  But this follows from the fact that as long as b 
(s) does not touch t - axis maximum is achieved for path having slope less than or equal to one. Further from 
the expression for U(x, t) value of maximum is increased by diminishing value of y1, therefore such a path 
obtained by diminishing value of y1 can not maximize the required expression, and it follows that maximizing 
path touch the s - axis atmost once. On the same lines as these we can prove the following theorem 

Theorem 2. Let   ὠ  and  ὠ   be the solutions of finite difference scheme with  l(t) replaced  by  lὸ  and  

lὸ  respectively, where  lὸ ¢  lὸ    then ὠ ¢  ὠ  

 
Theorem 3:  Let  ὠ   be the finite difference solution of mixed initial boundary value problem with  lὸ  as a 
continuous function of t. Then it converges to true solution of mixed initial boundary value problem. 
Proof:  Since  lὸ  is continuous we can construct step functions  an(t) and bn(t) such that  

an(t) <  l(t)  < bn(t)  

and an(t) and bn(t)  converge uniformly to lὸ in  [0, T]. Let  ὃDὼȟὸ and  ὄDὼȟὸ 
so that 

D ÌÏÇ ὃDὼȟὸ¢ D ÌÏÇ ὠ ¢ D ÌÏÇ ὄDὼȟὸ     (2.25) 
Using now results on step functions for step functions an(t) and bn(t) we get 

ÍÁØ
bÍ ȟȟ

ό ᾀὨᾀ
¤

Ὢὦ ίὨί
ȡb

Ὢᶻ
Ὠb

Ὠί
Ὠί

ȡb ¸

 

 

¢ 
ÌÉÍ
Dπ

ὭὲὪὟDὼȟὸ 

¢ 
ÌÉÍ
Dπ

ίόὴ ὟDὼȟὸ 

 

¢ ÍÁØ
bÍ ȟȟ

ό ᾀὨᾀ
¤

Ὢὥ ίὨί
ȡb

Ὢᶻ
Ὠb

Ὠί
Ὠί

ȡb ¸

 

Letting  n  ¤ and then letting D  0  we get 

Ὗὼȟὸ  ÍÁØ
bÍ ȟȟ

²

ό ᾀὨᾀ
¤

Ὢlί  Ὠί
ȡb

 

 
 

᷿ Ὢᶻ
b
Ὠί

ȡb ¸
 (2.26) 

and hence the proof. 
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Conclusions: Writing explicit formula for mixed initial boundary value problems, in general, is not possible. 
Using Hamilton -Jacobi theory it is possible only in case of Lax type equations. We have proved in this article 
that although hypothesis required to apply Hamilton Jacobi theory is not fulfilled still explicit formula can be 
written and we have proved that such a solution is achieved in the limit of finite difference scheme. We could 
prove this result only because finite difference scheme can be linearized. 
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MIXED INITIAL BOUNDARY VALUE PROBLEM FOR LAX 
EQUATION: AN ALTERNATIVE APPROACH 
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Abstract: In continuation with our investigations on constructions of explicit formulae for scalar convex 
conservations laws we consider mixed initial boundary value problem for Lax equation. We have already 
derived explicit formula for this problem. It appears that  calculations are complicated and are not illuminating 
enough to understand recursive nature of  derivation. In this paper we provide an alternative derivation for the 
explicit formula for Mixed Initial Boundary Value Problem for Lax equation.  

 

Introduct ion:                                                        
µ 

µ 

µ 

µ 
ÌÏÇὦ ὥὩ π                                               (1.1)    

όὼȟπ  ό ὼ 
όπȟὸ  lὸ 

Where we take   ὥȟὦ π ÓÏ ÔÈÁÔ ÓÏÌÕÔÉÏÎ ÄÏÅÓÎȭÔ ÁÄÍÉÔ ÂÏÕÎÄÁÒÙ ÌÁÙÅÒȢ )Î ɏΫɐ ÏÎ ÔÈÅ ÌÉÎÅÓ ÏÆ  ÄÅÒÉÖÁÔÉÏÎÓ 
provided in [6] and [7] we derived explicit formula for the solution of mixed initial boundary value problem 
(1.1). We proved that solution of a finite difference scheme converges to the solution of (1.1) in the limit ЎO π. 
Where  Ў is a step length used in the derivations of finite difference scheme for the problem (1.1). Details about 
finite difference scheme are given in [1], [6] and [7]. We use the same notations as those are given in [1]. We 
produce, on the lines of [6],[7] alternative derivation of  6 . The boundary condition is prescribed in the sense 
of Bardos, Leroux and Nedelec[8] so that existence of solution is assured. 
 
Derivation of Alternative Formula for  ╥▓

▪: Note that in the case  ὲ Ὧ formula is already in simple form and 
it is discussed in [1]. In the following article we consider the case ὲ Ὧ and on the lines of [6] and [7] we 
attempt to simplify formula for ὠ                                                         

                                      ὠ В ὦ ὥὠ В ὦ ὥὠ                    (2.1) 

ὠ
ὲ

Ὥ
ὦ ὥὠ

ὲ

Ὧ ρ
ὦ ὥὠ 

From these two equations we get the following- 

ὠ Ὡὠ В ὦ ὥ ὠ Ὡὠ                                                           (2.2) 

We rewrite the same equation  

ὠ Ὡὠ Ὓȟ 

Where  

                                                  Ὓȟ В ὦ ὥ ὠ Ὡὠ  

After a few manipulations we get the following 

                                                     ὠ Ὡ ὠ В Ὡ Ὓȟ                             (2.3) 

Which after plugging expression for Ὓȟ  and simplifying becomes the following equation 

                                                 ὠ Ὡ В ὦ ὥὠ В Ὡ В  ὦ ὥὠ  

В Ὡ В  ὦ ὥὠ  

After performing few more simple manipulations we get the following: 

ὠ Ὡ В ὦ ὥὠ Ὡ
 
ὦ ὥὠ Ὡ

 
ὦ ὥ ὠ Ὡ

 
ὦ ὥ ὠ  

В Ὡ В  ὦ ὥὠ +В Ὡ В  ὦ ὥὠ  

Which upon further simplification becomes the following:  
ὠ

Ὡ +В ὦ ὥὠ В ὦ ὥὠ В Ὡ  ὦ ὥ ὠ

Ὡ В  ὦ ὥὠ                                   (2.4) 

Basic equation in the above formula is of the following form- 

ÌÏÇ
ὲ

ὰ
ὥ ὦ 
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5ÓÉÎÇ 3ÔÅÒÌÉÎÇȭÓ ÁÓÙÍÐÔÏÔÉÃ ÆÏÒÍÕÌÁ ÆÏÒ ÌÏÇɉÎȦɊ ×Å ÇÅÔ on the same lines of [1] the following formula  

ÌÏÇὥ ὦ ὲÌÏÇ ÌÏÇ ÌÏÇὥ ÌÏÇὦὥ ÌÏÇς“ ÌÏÇ     (2.5) 

Multiply above equation by Ў to get  

ЎÌÏÇ
ὲ

ὰ
ὥ ὦ ὲЎÌÏÇ

ὲ ὰЎ

ὲЎ

ὰЎ

ὲЎ
ÌÏÇ

ὰЎ

ὲ ὰЎ
ÌÏÇὥ

ὰЎ

ὲЎ
ÌÏÇὦὥ

ρ

ς
ЎÌÏÇς“

ρ

ς
ÌÏÇ

ὲЎ

ὰὲ ὰЎ
 

 
As ЎO πȟ ÌÁÓÔ ÔÅÒÍ ÉÎ ÔÈÅ ÁÂÏÖÅ ÅØÐÒÅÓÓÉÏÎȟ ×ÈÉÃÈ ÉÓ ÅÒÒÏÒ ÌÅÆÔ ÉÎ ÕÓÉÎÇ 3ÔÉÒÌÉÎÇȭÓ ÆÏÒÍÕÌÁ ÁÐÐÒÏÁÃÈÅÓ ÚÅÒÏ ÁÎÄ 
only part which remains is  

ὲЎÌÏÇ
Ў

Ў

Ў

Ў
ÌÏÇ

Ў

Ў
)                                                                                          (2.6) 

Let Ўὲ ὸ  ÁÎÄ Ўὰ ώ then we get four separate expressions as  

¶ ÍÁØ ὸÌÏÇρ ÌÏÇ ᷿ ό ᾀὨᾀ ὸ ὼ‗ 

¶ ÍÁØ ὸÌÏÇρ ÌÏÇ ᷿ ό ᾀὨᾀ 

¶ ÍÁØ ί‗ὸÌÏÇρ ÌÏÇ ᷿ ό ᾀὨᾀ 

¶ ÍÁØ ὸÌÏÇρ ÌÏÇ ᷿ ό ᾀὨᾀ ὸ ὼ‗ 

And the solution to the mixed initial boundary value problem for Lax equation is maximum of  these four 
expressions. 
 
Conclusions: Finding explicit formula for mixed initial boundary value problems for scalar conservation laws 
is very difficult and it depends on functional form of flux function. Lax equation is one of the simplest kind as 
in this  ÃÁÓÅ ÓÏÌÕÔÉÏÎ ÄÏÅÓÎȭÔ ÁÄÍÉÔ ÂÏÕÎÄÁÒÙ ÌÁÙÅÒȢ /Î ÔÈÅ ÌÉÎÅÓ ÏÆ ÔÒÅÁÔÍÅÎÔ ÇÉÖÅÎ ÔÏ ÓÕÃÈ ÆÌÕØ ÆÕÎÃÔÉÏÎÓ ÂÙ 
Joseph and Gowda in [6] and [7] we have proved that solution of finite difference scheme converges to mixed 
initial boundary value problem for Lax equation. 
 
Appendix: In this section we will discuss a few specific initial boundary value problem. We will give solutions 
to the problem when initial data is of Riemann type. We will keep boundary data constant.  

                                                     
µ 

µ 

µ 

µ 
ÌÏÇὦ ὥὩ π                                                                  

 όὼȟπ  ό ὼ 
όπȟὸ  lὸ 

όὼȟπ
ρȟ     π ὼ ρπ
πȟ ρπ ὼ

 

Pure initial value problem (i.e without boundary condition) admits simple wave solution. Slope of  a 
characteristic is  

Ὠὼ

Ὠὸ

ὥὩ

ὦ ὥὩ
 

(1) Let us impose boundary condition ‗ ρȢ Then solution of the problem is  

όὼȟὸ
ρ     ὼ ρπ „ὸ
π   „ὸ ὼ

 

Where  

                              „ =0.1282882 

(2)  ‗ πȢυ 
In this case solution is  

    όὼȟὸ

ừ
Ử
Ừ

Ử
ứ

πȢυ           ὼ †ὸ

Ὣ ό        †ὸὼ „ὸ

ρ   „ὸ ὼ ρπ ὸ
π  ὸ ὼ ρπ

 

Where † σȢτςφρςςȟ„ πȢψςσςρτωω ȟ πȢρςψςψψς 
Both these illustrations are just illustrative and such solutions can always be constructed in variety of simple 
situations.  
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Abstract: General formulae appropriate for Monte Carlo simulation of conditional expectations of functions of 
random variable given a sufficient statistic are known in literature. Sampling from conditional distributions 
depends heavily on the way auxiliary variable and parameter distributed jointly. We argue that this joint 
distribution of auxiliary variable and parameter gives rise to heuristic to get correct distribution of underlaying 
random variable.   

 
Introduction: In statistics we have two different, but not exclusive, paradigms. One is about models which are 
parametric and other is nonparametric. In parametric regime of statistics models are parametrized and we can 
think of drawing samples from the population. In nonparametric regime we think of order statist ics, methods 
like artificial neural networks and wavelets etc. Nonparametric methods, although, are not independent of 
parameters altogether they significantly avoid use of parameters. In other words statistical analysis of any 
model in one way or other depend on the form of underlaying distribution. Assuming some form of 
distribution means assuming dependence of distribution on a parameter. This parameter may be a scalar or a 
vector, usually not known in advance and we have to depend on estimator of parameter known as statistic.  
    In statistics objective of variety of simulations is estimation of statistic which frequently  expressed as 
estimation of an expectation of the form  ὉὫὢ  where ὢ is a random variable. Suppose  Ὢὼ is the joint 
density of ὢ. Then 

ὉὫὢ ὫὼὪὼὨὼ 

Let  Ὕὼ is a statistic based on a random sample ὼ, we may be interested in computing quantities like mean 
and variance based on expectations, like above, depending on values of ὝὼȢ  It is one of the most important 
question in statistics is how to carry out evaluations  of integrals involved in computations of expectations. 
Monte Carlo methods are precisely developed to perform these kinds of calculations of expectations. Monte 
Carlo methods essentially use drawing samples from known distributions and then calculating mean gives rise 
to sought expectations. These calculations are based on some known statistic which approximates 
corresponding population parameter. It is however a question the extent to which sample drawn resembles to 
original distribution.  Lindqvist and Taraldsen have suggested some methods which makes drawn samples 
using statistic indeed correspond to original distribution.  
 
Work of Lindqvist and Taraldsen: Consider a random variable  ὢ along with a sufficient statistic Ὕ. In the 
following we give one heuristic to get a random sample for  ὢ if  given a sufficient statistic Ὕ Ȣ We  adopt the 
notations and framework given in Lindqvist and Taraldsen. In their paper Lindquist and Taraldsen it is 
assumed that a random variable Ὗ  (referred as auxiliary variable in abstract) is given with known distribution 
such that ὢȟὝ for given population parameter — can be simulated using Ὗ.  In other words there exist 
functi ons … ÁÎÄ † such that given —distribution of …Ὗȟ—, †Ὗȟ—  equals the joint distribution of 

 ὢȟὝȢ Their approach is to first draw U, then determine parameter value — such that  †Ὗȟ— ὸ and then use 

ὢ …Ὗȟ—) as the sought sample. Engen and Lillegard (1997)  have shown that in general ὢ …Ὗȟ—) may 

not have the correct distribution when — is not uniquely determined by  ὸ ÁÎÄ ό from the equation †όȟ—
ὸ even when ὢ is uniquely determined. Their claim is ὢ is distributed like X given t. Let  Ὢό be a density of 
U. Let — be distributed like ɡȢ Conditional density of †Ὗȟ— given Ὗ ό is denoted by ὡ όȢ Note that as U 
and ɡ are independent, ὡ ό, as a function of t, is †όȟ— for fixed u.  
   Then it follows that for an arbitrary   continuous function  ‰ὼȟ  

Ὁ‰ὢȿὝ ὸ
Ὁὤὡ

Ὁὡ
 

Where  
ὤ ό Ὁ‰…όȟɡ ȿ†όȟɡ ὸȢ 
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Basic advantage of these formulae is that quantities involved are functions of u and hence they can be 
simulated with a judicious choice of ɡ. We will comment on choice of ɡ afterwards. Thus, problem of 
simulating X using Monte Carlo method have a solution if †όȟ— ὸ has a unique solution for fixed u. 
Lindqvist and Taraldsen have further treated the case in which †όȟ— depends on u only through some 
function of u.  
 
Heuristic in Case of Nonuniqueness: Most important question is that how to proceed if †όȟ— ὸ ÄÏÅÓÎȭÔ 
have a unique solution. Suppose now that †όȟ— ὸ has two solutions for fixed u denoted by — ÁÎÄ   —. In 
order to handle such cases we propose that iterations of random samples can be used. Consider now first 
solution —. Corresponding to this solution we have distribution of …όȟ— . This expression is evaluated for 
fixed όȢ Now we take iterates of …Ȣ Denote random sample for u by ό 
      ό … όȟ— .  ό … όȟ— ȟ ȣȢ            ό … ό ȟ—  
This sequence of random variables asymptotically goes to distribution of  ὢ given a sufficient statistic T. 
 
Conclusion : Lindqvist and Taraldsen have successfully treated the case when †όȟ— ὸ for fixed u have 
unique solution. They also have considered some cases in which there is no unique solution to underlaying 
equation for — in terms of t. We have proposed  one heuristic which is mainly of theoretical concern. However 
with the help of modern powerful computing techniques validity of such an heurist ic can be tested.  
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Abstract:   The motivation of this work is to introduce and study the generalized sequence space 

ὔ ὢ ȟὓȟὊȟὶȟί defined by using the concepts of lacunary sequence — Ὧ , ȿ.ȟ Ðȿ- -summability, the 

sequence ὓ ὓ  of  Orlicz functions, the sequence Ὂ Ὢ  of modulus functions and multiplier sequence 

Ὥ  , ί π. Further, a paranorm structure has been imposed and the concept of ȿὛӶȿ-lacunary statistically 
convergence with respect to ȿἚȟἸἳȿ-  summability has been studied on this sequence space. 
 

Keywords: Lacunary Convergence, Lacunary Statistical Convergence, ȿἚȟἸἳȿ-Summability Paranormed Space. 
 

Introduction: Let В ὥ be an infinite series with the sequence of partial sums ί . Let ὴ  be a sequence 

of positive real numbers and ὖ В ὴ. The series В ὥ is said to be ȿἚȟἸἳȿ -summable [1] to the finite 
limit Љ  if  

ὸ В ὴίᴼЉ as  ὯᴼЊ 

and is said to be absolutely ȿἚȟἸἳȿ -summable  if Вȿὸ ὸ ȿ Њ. 
In [7]  it is shown that, given a sequence ὥ ὥ  and for  Ὧ ρ, 

‰ ὥ ὸ ὸ
ὴ

ὖὖ
ὖ ὥȟ  

Note that, for any sequences ὥȟὦ and scalar ‗, we have ‰ ὥ ὦ ‰ ὥ ‰ ὦ and ‰ ‗ὥ ‗‰ ὥ. 
 
An Orlicz function [17] is a function ὓȡπȟЊ ᴼ πȟЊ , which  is continuous, non-decreasing and convex with 
ὓ π π, ὓ ὼ  π for ὼ  π, and ὓὼᴼЊ as ὼO ЊȢ If the convexity condition is replaced by the 
condition ὓὼ ώ ὓ ὼ ὓώ, then the function is called modulus function [28].  
An Orlicz function is said to satisfy ɝ condition [19] for all values of ὼ, if and only if ὓ ςὼ ὑὓὼ for 
ὑ  πȟὼ πȢ 
This condition is equivalent to ὓὒὼ ὑὒὓὼȟᶅ ὼ πȟᶅ ὒ ρ. Also an Orlicz function satisfies the 
inequality ὓ ‗ὼ ‗ὓ ὼ for π ‗ ρ which is again equivalent to the inequalitity ὼ ὓὼ ὼ for 
ȟ πȟὼ πȢ 
Introduction of modulus function [28] and Orlicz function [17] has given a new dimension in the development 
of the theory of sequence spaces. Ruckle [28] used the idea of modulus function Ὢ to define a new sequence 
space Љ Æ where  
Љ Æ Ø Ø ȡ В ÆȿØȿ Њ . 
whereas Tzafriri and Lindenstrauss [20] used the idea of Orlicz function M to construct the Orlicz sequence 
space 

ὰ Ø Ø ȡ В -
ȿ ȿ

ЊȟÆÏÒ ÓÏÍÅ ʍ π. 

which becomes a Banach space with the norm ᴁὼᴁ ὭὲὪ ʍ πȡ В -
ȿ ȿ

ρ  

 
Later on, Various sequence spaces defined by Orlicz function and modulus function have been developed and 
discussed by Mursaleen et al. [23], Choudhury et al. [10], Gόngέr et al. [16], Nurray et al. [24], Ghosh et al. [15], 
Basu et al. ([3], [4]), Savas [32] and many others.. 

Using the idea of Orlicz function and the concept of ȿ.ȟ Ðȿ summability, Bhardwaj and Singh [7] introduced 
and studied the following class  



UGC Approved Journal -  Sl No 1814 Journal No 43832 

 

 

Journal Published by IMRF Journals | July 2017 Edition                                                                      |    44  

ὔ ὓȟὶȟ Á Á ȡ В -
ȿ ȿ

ЊȟÆÏÒ ÓÏÍÅ ʍ π , where 

ὶ ὶ be a bounded sequence of strictly positive real numbers. 
These classes have been further generalized by Altin et. al. [1] by choosing the elements of Á Á  in a 
seminormed space ὢ with seminorm ή, 

ὔ ὓȟὶȟήȟί Áɴ ×8ȡ В Ë - Ñ
ȿ ȿ

ЊȟÆÏÒ ÓÏÍÅ ʍ π  

where ὶ ὶ  is a bounded sequence of strictly positive real numbers. 
 
By a 'lacunary sequence' [12] we mean an increasing sequence of positive integers — Ὧ  where Ὧ π, and 
π Ὧ Ὧ ᴼЊ as ὶO Њ . The intervals determined by — are denoted by Ὅ Ὧ ȟὯ . Freedman et al. 
[12] introduced the space of lacunary strongly convergent sequences ὔas follows: 

ὔ ὼ ὼ ȡ  ÌÉÍOὬ В ȿὼ ίȿ ɴ πȟ   ÆÏÒ ÓÏÍÅ ί  

Statistical convergence for real and complex sequences was first defined by Steinhaus [29] and then H.Fast [11], 
Buck [8] and Schoenberg [33] independently. Fast extended the concept of sequential limit which he called 
statistical convergence. Schoenberg gave some basic properties of statistical convergence and studied the 
concept as summability method. 
A sequence Ø Ø  of complex numbers is said to be statistically convergent to L if for any  π, 

ÌÉÍ
ᴼ

ρ

ὲ
ȿὯ ὲȡ ȿὼ ὒȿ ȿ π 

where the vertical bar denotes the cardinality of the enclosed set. 
 
From the point of view of sequence spaces this convergence method has been generalized and developed by 
Fridy [13], Salat [30], Connor [9] and many others. Later on, Fridy and Orhan [14] combined the concepts of 
statistical convergence and lacunary convergence and introduced a new convergence method known as 
lacunary statistical convergence. Recently these convergence methods have also been studied on fuzzy 
sequence spaces by Nurray [25], Savas [31], Basu [6] and many others. 
 
Being motivated by the existing literature, the present author has made an attempt to extend the study on the 

sequence space ὔ ὢ ȟὓȟὊȟὶȟί of sequences of the elements of a Banach space X, defined by using 

sequences of modulus Ὂ Ὢ   as well as Orlicz functions ὓ ὓ Ȣ Further lacunary statistical convergence 
has been studied on this space. 
 
Throughout the work, the following defnition and standard inequalities have been used frequently: 
 
Paranorm:  Let X be a linear space. Then ὫḊ ὢᴼ Ὑ is called paranorm on X if for x, y ɴ ὢ and any scalar ‗, (i) 
Ὣὼ π (ii) ὼ — implies Ὣὼ  π; (iii) Ὣὼ  Ὣ ὼ iv) Ὣὼ  ώ Ὣὼ  Ὣώ; (v) Ὣ‗ȟὼ ‗ὼ O
π as ὲᴼЊ, whenever ‗ȟᴼ‗  and ὼ ᴼὼ, for scalars ‗ȟ‗  and vectors  ὼȟὼ 
(for all n ɴ ᴓ)  ɴX. The space ὢȟὫ is called a paranormed space. 
If (i) is replaced by (i) Ὣὼ  π if and only if ὼ — then Ὣ is called a total paranorm on ὢ. 
 
Inequalities: Let  ὶ ὶ  be a bounded sequence of strictly positive real numbers with π ὶ ÓÕÐὶ
ὌȟὈ άὥὼ ρȟς , Ὕ ÍÁØρȟὌȢ Let Ὢ be a modulus function. 
1. ȿὥ ὦȿ Ὀȿὥȿ ȿὦȿ  Ƞ [21] 
2. ȿ‗ȿ ÍÁØρȟȿ‗ȿ Ƞ  [21] 
3. Ὢ‗  ρ ȿ‗ȿ  Ὢρ, [22] 
 

The Space ╝▬Ᵽ
╧ⱴ╪ȟ╜ȟ╕ȟ►ȟ▼: 

The new sequence space is now introduced as follows: 

Let ὓ ὓ  be a sequence of /rlicz functions satisfying    

ÌÉÍO ÓÕÐὓ π ÆÏÒ ÓÏÍÅ  ” πȣȣȣȣȢȢ(2.1)                                          

Let Ὂ  Ὢ  be a sequence of modulii satisfying  
ÌÉÍO Ὢ ό πȟ where όᶰπȟЊȣȣȣȣȢȢɉάȢάɊ 
Let  ὢȟᴁȢᴁ    be a Banach space over the complex field ᴇ and ὶ ὶ  be a bounded sequence of strictly 
positive real numbers with π ὶ ÓÕÐὶ Ὄȟ  Ὀ ÍÁØρȟς , Ὕ ÍÁØρȟὌȢ 
Let ὢ ȿ ȿ ὥ ὥ ᶰύὢȡ Ὢȿ‰ὥȿᶰὢ 
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Where  ύὢ  is the class of sequences of elements of ὢ. For simplicity, throughout the article  ὢ ȿ ȿ will be 

denoted by ὢ . 

Let — Ὧ   ÂÅ Á ÌÁÃÕÎÁÒÙ ÓÅÑÕÅÎÃÅ where  Ὧ πȟπ Ὧ Ὧ   and  Ὤ Ὧ  ɀὯ Њ  as  ὮO  Њ .The 

intervals determined by — are denoted by  Ὅ Ὧ ȟὯ . 

The following sequence spaces are defined as follows: 

. ὢ ȟ-ȟ&ȟÒȟί ὥ ὥ ȡÌÉÍ
  
В Ὥ ὓ

ᴁ ȿ ȿЉᴁ
ᶰ πȟ   ί π ÆÏÒ ÓÏÍÅ ” πȟЉɴ  ᴇ . 

. ὢ ȟ-ȟ&ȟÒȟί ὥ ὥ ȡÌÉÍ
  
В Ὥ ὓ

ᴁ ȿ ȿᴁ
ᶰ πȟ   ί π ÆÏÒ ÓÏÍÅ ” πȟЉɴ  ᴇ . 

. ὢ ȟ-ȟ&ȟÒ ὥ ὥ ȡÌÉÍ
  
В ὓ

ᴁ ȿ ȿᴁ
ᶰ πȟ   ÆÏÒ ÓÏÍÅ ” πȟЉɴ  ᴇ  

 
Particular Case: Some known sequence spces can be derived from these sequence spaces by restricting ὓȟὊȟὶ 
and ί as follows: 
Choosing ί πȟ ὓ ρȟ” ρȟὪ Ὢȟ‰ ὥ=ὼ, ὶ ρ for all i, ὢ ᴙ we have the spaces of Pehlivan et. al. 
[27]; 

. Ὢ ὼ ὼȡÌÉÍ
  
В Ὢȿὼ Љȿ πᶰ  ÆÏÒ ÓÏÍÅ Љ ; 

Choosing ί πȟ ὓ Ὅȟ” ρȟ‰ ὥ=ὸ(a), where ὸ(a)=
Ễȣ

 , „ ὲ denote the i-th iterate of 

the mapping „ at n, we have the space of Karakaya et. al. [18].; 

×ȟ& ὥ ὥ ȡÌÉÍ
  
В Ὢȿὸ Áȿ πᶰ  ÕÎÉÆÏÒÍÌÙ  ÉÎ   Î ; 

 
Choosing  ὓ ὓȟὪ Ὅȟὢ ᴙ ȟ‰ ὥ ὼȟὶ ρȟÆÏÒ ÁÌÌ Ὥ,— ς   ÁÎÄ Ó π we have the spaces of  
Parashar et. al. [26]; 

ὡ ὓȟὴ ὼ ὼȡÌÉÍ В ὓ
ȿ Љȿ

π ÆÏÒ ÓÏÍÅ ” π ; 

 

Choosing ὓ ὓȟὪ ὍȟÁÎÄ ɾ Éȟ s π we have the spaces of  Basu [5] ; 

. %ȟ-ȟÒȟɾ ὼ ὼ ȡ ÌÉÍO В ȿȿᶰ ὓ
ᴁ ᴁ

π ÆÏÒ ÓÏÍÅ ” π  

 
Main Results:  

Theorem 3.1: . ὢ ȟ-ȟ&ȟÒȟί and . ὢ ȟ-ȟ&ȟÒȟί are linear spaces over the complex field C, where 

ὓ ὓ   and Ὂ Ὢ satisfy conditions 2.1 and 2.2  respectively. 
 

Proof:  We will prove the result for . ὢ ȟ-ȟ&ȟÒȟί. The other case is similar. 

Let ὥ ὥ ȟὦ ὦ  ɴ . ὢ ȟ-ȟ&ȟÒȟί 

and ȟ ɴ  ᴇ . 

ÌÉÍ
  
В Ὥ ὓ

ᴁ ȿ ȿᴁ
ᶰ π,    for some  ” πȟ   

and 

ÌÉÍ
  
В Ὥ ὓ

ᴁ ȿ ȿᴁ
ᶰ πȟ    for some ” πȢ 

Let” ÍÁØ ς ρ ȿɻȿ ʍȟς ρ ȿ ȿ ʍ  
Since each Ὢ is non-decreasing, sub-additive and ὓ is non-decreasing and convex, 

Ὥ ὓ
ᴁὪȿ‰ ὥ ὦȿᴁ

”
ᶰ

 

Ὥ ὓ
ᴁὪȿ‰ ὥȿᴁ ᴁὪȿ‰ ὦȿᴁ

”
ᶰ

 

 

ρ

ς
Ὥ ὓ

ᴁὪȿ‰ ὥȿᴁ

”
ὓ
ᴁὪȿ‰ ὦȿᴁ

”
ᶰ
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Ὥ ὓ
ᴁὪȿ‰ ὥȿᴁ

”
ὓ
ᴁὪȿ‰ ὦȿᴁ

”
ᶰ

 

Ὀ Ὥ ὓ
ᴁὪȿ‰ ὥȿᴁ

”
ᶰ

Ὀ Ὥ ὓ
ᴁὪȿ‰ ὥȿᴁ

”
ᶰ

 

where Ὀ ÍÁØρȟς Ȣ This proves the linearity of the new space. 
 

Theorem 3.2 : . ὢ ȟ-ȟ&ȟÒȟί is a total paranormed linear topological space under the paranorm 

Ὣὥ ÉÎÆ”  ȡ В Ὥᶰ ὓ
ᴁ ȿ ȿᴁ

ρ  ÆÏÒ ÓÕÆÆÉÃÉÅÎÔÌÙ ÌÁÒÇÅ Ὦ ÁÎÄ Ὧ ρȟςȟȣ ,   

 ὼ ὼ   ɴ. %ȟ-ȟÒȟɾ  where each ὓ  satisfies ɝ-condition.  

 

Proof:  Let ὥ ὥ  ɴ. ὢ ȟ-ȟ&ȟÒȟίȢ 

Its clear that Ὣὥ  Ὣ ὥ and taking     ρ in the previous theorem we get, Ὣὥ  ὦ Ὣὥ  Ὣὦ. 
Also, for ὥ —ȟὫὥ  π, as ὓ π π  for each i, 
where — denotes the sequence πȟπȟȣȢȢ Now suppose that Ὣὥ  π. 
Then for a given ‐> 0, there exists some ” π ”  ‐ such that 
 

ρ

Ὤ
Ὥ

ᶰ

ὓ
ᴁὪȿ‰ ὥȿᴁ

‐
 

ρ

Ὤ
Ὥ

ᶰ

ὓ
ᴁὪȿ‰ ὥȿᴁ

”
ρ  

for each Ὦ. 
 
If possible, let, ὥ — i.e., ὥ πȟ for some ά  ɴὍ| . 

Then letting  ‐O π   and using the properties of   ᴁȢᴁ , Ὢ and ὓᴂί   we get 
ᴁὪȿ‰ ὥȿᴁ

‐
ᴼЊ 

and hence 

ρ

Ὤ
Ὥ

ᶰ

ὓ
ᴁὪȿ‰ ὥȿᴁ

‐
ᴼЊ 

which is a contradiction. Hence , ὥ —. 
 
Next we will show that, Ὣ is continuous with respect to scalar multiplication . 

Let Áɴ . ὢ ȟ-ȟ&ȟÒȟί and  ‗ ɴ  ᴇȢ To show Ὣ‗ὥO πȢ 

Since  Ὣ‗ὥ ÉÎÆ”  ȡ В Ὥᶰ ὓ
ᴁ ȿ ȿᴁ

ρȟ for sufficiently large Ὦ and Ὧ ρȟςȟȣ  

We can write,  

Ὣ‗ὥ ÉÎÆ

ừ
Ử
Ử
Ừ

Ử
Ử
ứ ρ ȿ‗ȿ  ȡ

  
ρ

Ὤ
Ὥ

ᶰ

ὓ
ᴁὪȿ‰ ὥȿᴁ



ρ
ữ
Ử
Ử
Ữ

Ử
Ử
ử

 

where 
ȿȿ

. 

Since ρ ȿ‗ȿ  ÍÁØρȟρ ȿ‗ȿ  , 

then  ρ ȿ‗ȿ  

ÍÁØρȟρ ȿ‗ȿ  Ⱦ , 
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Hence Ὣ‗ὥ ÍÁØρȟρ ȿ‗ȿ  

ÉÎÆ

ừ
ỬỬ
Ừ

ỬỬ
ứ

ȡ

  ȡ

  
ρ

Ὤ
Ὥ

ᶰ

ὓ
ᴁὪȿ‰ ὥȿᴁ


ρ

ÆÏÒ ÓÕÆÆÉÃÉÅÎÔÌÙ ÌÁÒÇÅ Ê ữ
ỬỬ
Ữ

ỬỬ
ử

 

 

Which converges to zero as Áɴ . ὢ ȟ-ȟ&ȟÒȟί. 

Next let ‗O π for some scaler ‗ɴ ᴇ and ὥ ὥ)  ɴ. ὢ ȟ-ȟ&ȟÒȟί. 

Then for arbtrary positive number  π, there exist a positive integer ᴓ such that 
 

В Ὥᶰ ὓ
ᴁ ȿ ȿᴁ

  for some ” π ÁÎÄ ÆÏÒ ÁÌÌ Ὦ ὔȢ 

Hence  

ρ

Ὤ
Ὥ

ᶰ

ὓ
ᴁὪȿ‰ ὥȿᴁ

”

Ⱦ



ς
 

for some ” π and  for all Ὦ ὔȢ 
 
Now let π ȿ‗ȿ ρȢ  Since each ὓ  satisfies ɝ-condition (i.e.,ὓ ὒὼ ὒ ὓ ὼȟὼ πȟὒ ρ ) and by 
Inequality 3 ., we have for all Ὦ ὔ we get 
 

ρ

Ὤ
Ὥ

ᶰ

ὓ
ᴁὪȿ‗‰ὥȿᴁ


 

 ρ ȿ‗ȿ   

ρ

Ὤ
Ὥ

ᶰ

ὓ
ᴁὪȿ‰ ὥȿᴁ





ς
 

Since  ὓ  is continuous everywhere in πȟЊ  
then for Ὦ ὔ, 

ὸ= В Ὥᶰ ὓ
ᴁ ȿ ȿᴁ

 

is continuous at 0. So, there is a  π<  ρ  

such that ȿὸȿ  for π < ὸ  . 

Let there exist B such that ȿ‗ȿ  .for ὲ  ὄ 
Hence for ὲ  ὄ   and Ὦ ὔ, 

ρ

Ὤ
Ὥ

ᶰ

ὓ
ᴁὪȿ‗‰ ὥȿᴁ

”

Ⱦ

 


ς
 

for Ὦ ρȟςȟȣȢȢȟὔ. 
Thus 

ρ

Ὤ
Ὥ

ᶰ

ὓ
ᴁὪȿ‗‰ ὥȿᴁ

”

Ⱦ

 

 
for all ὲ  ὄ   and for all  Ὦ and hence  Ὣ‗ὥO π ὥί ‗O πȢ 

Consequetly g becomes a paranorm function on the space  . ὢ ȟ-ȟ&ȟÒȟί  becomes a paronormed pace. 

We now study Lacunary statistical convergence method with respect to ȿἚȟἸἳȿ- summability [5] as follows: 
 

Lacunary Statistical Convergence with respect ȿἚȟἸἳȿ- Summability on ἚἸ ╧ꜚ ╪ȟἙȟἐȟἺȟ▼: 
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A sequence ὥ  ὥ   is ȿὛӶȿ  statistically convergent to Љɴ ὢ  with respect to ȿἚȟἸἳȿ- summability, if for any 
 πȟ 

ÌÉÍ
ᴼ
 
ρ

Ὤ
Ὥɴ  Ὅȡ ᴁὪȿ‰ ὥ Љȿᴁ  ‐ π 

The space of all ȿὛӶȿ-lacunary statistically convergent with respect to ȿἚȟἸἳȿsummability is denoted by 
ȿὛӶȿȟȿἚȟἸἳȿ. 

 
Theorem 4.1 If ‰ ὥᴼЉ, then ὥ  ὥ  ɴ ȿὛӶȿȟȿἚȟἸἳȿ . 

 
Proof:  Let ‰ ὥᴼЉ. Then by definition of modulus function it follows that Ὢȿ‰ ὥ Љȿᴼπ as ὭO Њ and 

consequently, ᴁὪȿ‰ ὥ ЉȿᴁO π since ὢ is a ὑ-space. Hence ὥ  ὥ  ɴ ȿὛӶȿȟȿἚȟἸἳȿ. 

 

Theorem 4.1 . ὢ ȟ-ȟ&ȟÒȟ Ṓ ȿ3ȿȟ   ȿȟ ȿȢ 

 

Proof:  Let  ὼ ὼ  ɴ . ὢ ȟ-ȟ&ȟÒ 

Then  ɱЉɴ  ᴇ such that 

ÌÉÍ
ᴼ

ρ

Ὤ
ὓ
ᴁὪȿ‰ ὥȿ Љᴁ

”
ᶰ

π 

for some ʍ πȢ 

Now,  В ὓ
ᴁ ȿ ȿЉᴁ

ᶰ В ὓ
ᴁ ȿ ȿЉᴁ

ᶰ

ᴁ ȿ ȿЉᴁ

 

ρ

Ὤ
ὓ
ᴁὪȿ‰ ὥȿ Љᴁ

”
ᶰ

ᴁ ȿ ȿЉᴁ

 

 
ρ

Ὤ
ὓ
ᴁὪȿ‰ ὥȿ Љᴁ

”
ᶰ

ᴁ ȿ ȿЉᴁ

 

                                                                                   В ὓ ᶰ

ᴁ ȿ ȿЉᴁ

 

                                В ÍÉÎ
ὓ ‐  ȟ

 ὓ ‐   
ᶰ

ᴁ ȿ ȿЉᴁ

 

    Ὥɴ  Ὅȡ ᴁὪȿ‰ ὥȿ Љᴁ ‐            ÍÉÎὓ ‐  ȟ   ὓ ‐    

Taking limit ὶO Њ on both sides the result follows. 
 
Remark  5.1 The inclusion is strict. 
 
Example: Suppose that  ὓ ὓ  is unbounded and ὶ ρ for each Ὥ and  — Ὧ   be a lacunary sequence, so 

that there exist a positive sequence ώ  such that ὓ Ὤ  for some ” π and  ά ρȟςȟȣ. Also we 

define, ᴁὪȿ‰ ὥȿᴁ=
ώ ȟ      Ὥ ά

—ȟ      ÏÔÈÅÒ×ÉÓÅ
ȟ. 

Then we have,  Ὥɴ  Ὅȡ ᴁὪȿ‰ ὥȿᴁ  ‐ ᴼπ ÁÓ ὮO Њ 

Consequently,  ὥ ὥ
ȿȿȟ   ȟ 
ựựựựựự  πȢ 

But, ÌÉÍO В ὓ
ᴁ ȿ ȿᴁ

ᶰ π. 

Hence  ὥ ὥ  ɵ. ὢ ȟ-ȟ&ȟÒȟ. 

 

Theorem 5.1: . ὢ ȟ-ȟ&ȟÒȟ  ȿ3ȿȟ   ȿȟ ȿÉÆÆ  ὓ  is bounded for each ὭȢ 

Proof: Suppose that ὓ  is bounded for each i and ὥ ὥ
ȿȿȟ   ȿȟ ȿ

ựựựựựự  π. Hence there exist an integer ὑ such 
that ὓ ὸ ὑ, for each Ὥ and each  ὸ π. Then for each Ὦ, 
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ρ

Ὤ
ὓ
ᴁὪȿ‰ ὥȿᴁ

”
ᶰ

ρ

Ὤ
ὓ
ᴁὪȿ‰ ὥȿᴁ

”
ᶰ

ᴁ ȿ ȿᴁ

ρ

Ὤ
ὓ
ᴁὪȿ‰ ὥȿᴁ

”
ᶰ

ᴁ ȿ ȿᴁ

 

 

  ὑ Ὥɴ  Ὅȡ ᴁὪȿ‰ ὥȿᴁ  ‐ +    ÍÉÎὓ ‐  ȟ   ὓ ‐    

Now, taking limit as ὮO Њ the result follows. The converse follows from Theorem 4.2. Hence the proof. 
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Abstract:  The purpose of this paper is to introduce the new notion of 2-fuzzy n-n b-semi inner product space 
and 2-fuzzy n-n b-Hilbert space .Some characterizations of this space is dealt with.  
 
Keywords : 2-Fuzzy N-N Inner Product Space, 2-Fuzzy N-N B-Hilbert SpacÅȟ "ÅÓÓÅÌȭÓ )ÎÅÑÕÁÌÉÔÙȟ 2ÉÅÓÚ 
Theorem. 

 
Introduction:  The concept of fuzzy sets was introduced by Zadeh [22] in 1965 which began a new 
revolutionary field in mathematics. The theory of 2-norm on a linear space was given by Gahler[9](1964). In 
1984 Katsaras [12] gave the notion of fuzzy norm on a linear space. Several different definitions of fuzzy normed 
spaces were given by Cheng and Mordeson[2], Bag and Samanta[1]. R.M.Somasundaram and 
ThangarajBeaula[17] defined the notion of fuzzy 2-normed linear space, {F(X),N}, further improvised by 
proving some standard results in [21]. The concept of 2-inner product space was introduced by C.R.Diminnie, 
S.Gahler and A.White [4]. Further various researchers established new notions of fuzzy normed linear 
space[6,7,8,12,15,16] and fuzzy inner product space in [5,12,13] . Vijayabalaji and Thillaigovindan [18] introduced 
fuzzy n-inner product space as a generalization of the concept of n-inner product space given by Y.J.Cho, 
M.Matic and J.Pecaric in [3]. ThangarajBeaula and Daniel Evans extended the notion of [18] to 2 fuzzy n-n 
inner product space in [20] P. K. Harikrishnan, P. Riyas and K. T. Ravindran gave the proof of Riesz theorem 
for 2- inner product spaces which hold for b-linear functional. The notion of 2 - fuzzy n - b metric space was 
given by ThangarajBeaula and ChristinalGunaseeli[19] 
 
In this paper the notions of 2-fuzzy n-n b-inner product space and 2-fuzzy n-n b-Hilbert space are introduced 
and some standard results are proved. 
 
Preliminaries:  
Definition2.1: ([18]): 
Let n Nɴ and X be a real linear space of dimension greater than or equal to n. A real valued functionᴁȢȟȣȟȢᴁ on 
8ИȣИ8 ɉÎ-times) = X 

n
 satisfying the following four properties

 

i)ᴁὼȟȣȟὼᴁ= 0  if and only if ὼȟȣȟὼlinearly dependent. 
ii)ᴁὼȟȣȟὼᴁis invariant under any permutation  
iii)ᴁὼȟȣȟὥὼᴁ=ȿȿᴁὼȟȣȟὼᴁ, for any  is real 
iv) ᴁὼȟȣȟὼ ȟώ ᾀᴁ                            ᴁὼȟȣȟὼ ȟώᴁ+ᴁὼȟȣȟὼ ȟᾀᴁ 
is called an n-norm on X and the pair (X,  ᴁȢȟȣȟȢᴁ) is called n-normed linear space. 
 
Definition 2.2: ([22]): A fuzzy set in X is a map from X to [0,1], it is an element of [0,1]

X 

 
$ÅǢÎÉÔÉÏÎ άȢέȡ ([17]):  Let X be a nonempty and F(X) be the set of all fuzzy sets in X. 
 If f Fɴ(X) , f ={(x,µ)|x Xɴ and µɴ (0,1]}then f is a bounded function for f(x) ɴ  [0,1] 
ɉɉÉȢÅɊ ȿÆɉØɊȿПΫɊȢ ,ÅÔ + ÂÅ ÔÈÅ ÓÐÁÃÅ ÏÆ ÒÅÁÌ ÎÕÍÂÅÒÓȟ &ɉ8Ɋ ÉÓ Á ÌÉÎÅÁÒ ÓÐÁÃÅ ÏÖÅÒ ÔÈÅ ǢÅÌÄ + ×ÈÅÒÅ ÔÈÅ ÁÄÄÉÔÉÏÎ ÁÎÄ 
ÓÃÁÌÁÒ ÍÕÌÔÉÐÌÉÃÁÔÉÏÎ ÁÒÅ ÄÅǢÎÅÄ ÂÙ  
ÆЕÇ КɕɉØȟЪɊЕɉÙȟʉɊɖКɕɉØЕÙȟЪʉ᷈ɊȿɉØȟЪɊÆɴ ÁÎÄ ɉÙȟʉɊgɴ} 
and  kf = {(kf,µ)|(x,µ) fɴ,} where k Kɴ.  
 
The linear space F(X) is said to be normed space if for every f Fɴ(X), there is associated a non-negative real 
numbers ||f|| called the norm of f in such a way that 
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(i)   ||f||= 0 if and only if f = 0 For||f||=0 ᵾ{||(x,µ)|||(x,µ) fɴ}= 0, ᵾx = 0, µɴ (0,1]ᵾf =0. 
(ii)  ||kf||=|k|||f||, k Kɴ.  
For||kf||={||k(x,µ)||/(x,µ ) fɴ                      
and k  ɴK}={|k|||(x,µ)||/(x,µ) fɴ }=|k|||f||.  
ɉÉÉÉɊ ȿȿÆ ЕÇȿȿПȿȿÆȿȿЕȿȿÇȿȿ ÆÏÒ ÅÖÅÒÙ ÆȟÇFɴ(X). 
&ÏÒȿȿÆЕÇȿȿКɕȿȿɉØȟЪɊЕɉÙȟʉɊȿȿȾØȟÙ8ɴȟЪȟʉ(ɴ0,1]} 
={||(x+y),(µ ʉ᷈Ɋȿ   ȿȾØȟÙ8ɴȟЪȟʉ(ɴ0,1]} 
ПɕȿȿɉØȟЪʉ᷈ɊȿȿЕȿȿɉÙȟЪʉ᷈ɊȿȿȾɉØȟЪɊÆɴ          ÁÎÄ ɉÙȟʉɊgɴ}=||f||+||g||.  
 

Definition 2.4: ([5]): Let F(X
n
) be a linear space over a real field. A fuzzy subset N of F(X

n
) 

n
³ R is called 2-

fuzzy n-n norm if and only if   

(N1) for all t Í R, t ¢ 0, N (f1ȟȣȟÆn, t)  =  0 

(N2) for all t Í R, t > 0, N (f1ȟȣȟÆn, t)  =  1 if and only if  f1ȟȣȟÆn  are linearly dependent 
(N3) N (f1ȟȣȟÆn, t) is invariant under any permutation of  f 1ȟȣȟÆn 

(N4) for all t Í R, t > 0, 

N (f1ȟȣȟÃÆn, t)    = N(f1ȟȣȟÆn, 
c

t
) 

(N5) for all s,tÍ R,  N (f1ȟȣȟÆn + fn
ȭ
, s+t) ²   

 min {N(f 1ȟȣȟÆn,s),N(f1ȟȣȟÆn
ȭ
,t)}  

 (N6) N (f1ȟȣȢÆn,t) is a non-decreasing function of  tÍR and ÌÉÍO.ÆρȟȣȟÆÎȟÔ 
The (F(X

n
)

n
, N) is called a 2- fuzzy n-n normed linear space. 

 

Definition 2.5:  ([21]): Let F(X) be a linear space over the complex field C. The fuzzy subset h defined as a 

mapping from  F(X)³F(X)³C to [0,1] such that for all f,g,hɴ  F(X) and a ɴ C 

(I1) for s,t  ɴC,h(f+g,h, t  + s )  

  ² min {h(f,h, t ),h(g,h, s )} 

(I2) for s,t  ɴC,h(f,g, st ) 

² min {h(f,f, s 2
 ), h(g,g, t 2

 ) } 

(I3) for t Cɴ ,h(f,g,t) = h(g,f,t)  

(I4)  h(af,g,t) = h(f,g,
a
), a 0  

(I5)  h(f,f,t) = 0 for all t  ɴ C\R
+ 

(I6)  h(f,f,t) = 1 for all t > 0 if and only if f = 0 

(I7)  h(f,f,.) : R O  I (=[0,1]) is a monotonic    
non-decreasing function of R and  

lim h(f,f,t) = 1 as  tO Њ 

Then h is said to be a 2-fuzzy inner product space on F(X) and the pair (F(X),h) is called a 2-fuzzy inner 
product space. 

Definition 2.6: ([20]): Let F(X
n
) be a linear space over a real field. A fuzzy subset N of F(X

n
) 

n
³ R is called 2-

fuzzy n-n norm if and only if    

(N1) for all t Í R, t ¢ 0, N (f1ȟȣȟÆn, t)  =  0 

(N2) for all t Í R, t > 0, N (f1ȟȣȟÆn, t)  =  1 if and only if  f1ȟȣȟÆn  are linearly dependent 
(N3) N (f1ȟȣȟÆn, t)   is invariant under any permutation of  f1ȟȣȟÆn 

(N4) for all t Í R, t > 0, 

N (f1ȟȣȟÃÆn, t)  = N(f1ȟȣȟÆn, 
c

t
) 

(N5) for all s,tÍ R,  N (f1ȟȣȟÆn + fn
ȭ
, s+t)   

                          ²  min {N(f 1ȟȣȟÆn,s),N(f1ȟȣȟ Æn
ȭ
,t)}  

(N6) N (f1ȟȣȢÆn,t) is a non-decreasing function of  tÍR and ÌÉÍO.ÆȟȣȟÆȟÔ=1 
The space (F(X

n
)

n
, N) is called a 2- fuzzy n-n normed linear space. 
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Definition 2.7: ([20]): Let F(X
n
),be  a linear space over ᴇ. Define a fuzzy subset h defined as a mapping from 

[F(X
n
)]

n+1
³ ᴇ to [0,1] such that  

(f1ȟȣȢÆn, fn+1)  ɴ[F(X
n
)]

n+1
aɴ  ᴇ satisfying the following conditions.  

(I1) for g,h  ɴF(X),  s,t ɴ ί 

h ( f1+ g, h, f2ȟȣȟÆn, t  + s ) ²  

min {h (f1,h, f2ȟȣȟÆn, t ), h (g, h, f2ȟȣȟÆn, s )} 

(I2) for s,tÍᴇ h (f1,g, f2ȟȣȟÆn, st ) ²  

min {h (f1, f1, f2ȟȣȟÆn, s 2
, h (g, g, f2ȟȣȟÆn, t 2

} 

(I3) for  tÍ ᴇ 

h (f1, g, f2ȟȣȟÆn, t ) = h (g, f1, f2ȟȣȟÆn, t ) 

(I4) a1,a2,  Í ᴇ  ,    a1̧  0, a2  ̧o 

h (a1f1, a2f1, f2ȟȣȟÆn,t), = h (f1, f1, f2ȟȣȟÆn,
21 Ŭ ,Ŭ 

t
) 

(I5) h(f1,f1, f2ȟȣȟÆn,t), = 0   ᶅ  t Íᴇ / R
+
 

h (f1,f1, f2ȟȣȟÆn,t) = 1 ᶅ  t > 0 if and only if  f1ȟȣȢÆn are linearly dependent. 

(I6)  h(f1,g, f2ȟȣȟÆn, t) is invariant under any permutation of f 1,g, f2ȟȣȟÆn 

(I7)"t >0 ,h(f1, f1, f2ȟȣȟÆn, t) =h(f2, f2, f1, f3,ȣȟÆn, t)  

(I8)h(f1,g,f2ȟȣȟÆn, t) is a monotonic non-decreasing function  of ᴇ and                      ÌÉÍh ÆȟÇȟ ÆȟȣȟÆȟÔ  = 1 

Then h is said to be the 2- fuzzy n-n inner product F(X)
n
 and the pain (F(X)

n
 ,h) is called  

2 - fuzzy n-n IPS. 
 

Definition 2.8: ([20]): Let (F(X
n
),h)  be a 2-fuzzy n-n IPS satisfying the condition h (f1, f1,f2ȟȣȟÆn, t

2
 )  > 0,  

when t > 0 implies that f1,f2ȟȣȟÆn are linearly dependent. Then for all aɴ (0,1), define  

})  t,f,é,f,f ,(f ; {inff..., ,f 2

n211n1 ah
a

²= t a crisp norm on F(X
n
)  called the a-n-n norm on F(X

n
)  

generated by h. 
 
Fuzzy N-N B-Semi Inner Product Space:  
Definition 3.1: Let (F(X

n
),ᴁȢȟȣȟȢᴁ) be a n-normed space and f,gɴ  F(X

n
), then f is said to be b-orthogonal to g if 

and only if there exists dɴ  F(X
n
) such that for ÅÖÅÒÙ ʂȟ 

ᴁÆȟÄȣȟÆᴁ 0, ᴁÆ ɻÇȟÄȣȟÆᴁ ¢  ᴁÆȟÄȣȟÆᴁ and g π 
 

Definition 3.2: Let F(X
n
) be a linear space over a real field. A fuzzy subset N of [F(X

n
)] 

n
³ R is called fuzzy 

n-n b-norm if and only if    

(N1) for all t Í R, t ¢ 0, N (f1ȟȣȟÆn, t)  =  0 

(N2) for all t Í R, t > 0, N (f1ȟȣȟÆn, t)  =  1 if  f1ȟȣȟÆn  are linearly dependent 
(N3) N (f1ȟȣȟÆn, t) is invariant under any permutation of  f 1ȟȣȟÆn 

(N4) for all t Í R, t > 0,  

 N (f1ȟȣȟÃÆn, t) = N(f1ȟȣȟÆn, 
c

t
) 

(N5) for all s,tÍ R,  N (f1ȟȣȟÆn + fn
ȭ
, s+t) ²   

    u{min  {N(f 1ȟȣȟÆn,s),N(f1ȟȣȟ Æn
ȭ
,t)},  0 Õ ρ 

(N6) N (f1ȟȣȢȟÔɊ ÉÓ Á ÎÏÎ-decreasing function of  tÍR and ÌÉÍO.ÆȟȣȟÆȟÔ 
The space (F(X

n
)

n
, N) is called a  

2- fuzzy n-n b- semi normed linear space. 
 

Definition 3.3: Let F(X
n
),be  a linear space over 2. Define a fuzzy subset ʂ as a mapping from [F(X

n
)]

n+1
³ 2 to 

[0,1] such that (f1ȟȣȢÆn, fn+1)  ɴ[F(X
n
)]

n+1
 and a ɴ2 satisfying the following conditions.  
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(I1) for g,h  ɴF(X),  s,t ɴ 2 
 ʂ( f1+ g, h, f2ȟȣȟÆn, t+ s)  

  ² u[min {ʂ (f1,h,f2ȟȣȟÆn, t), ʂ (g, h, f2ȟȣȟÆn, s)}] 

(I2) for s,tÍ2 {ʂ(f1,g, f2ȟȣȟÆn,ЍÓÔ) 

    ²Õ[min {ʂ(f1, f1, f2ȟȣȟÆn, s),ʂ(g, g, f2ȟȣȟÆn, t}]  

(I3) for  tÍ 2 
ʂ (f1, g, f2ȟȣȟÆn,t) = ʂ (g, f1, f2ȟȣȟÆn,t)  

(I4) a1,a2,  Í 2  ,    a1̧  0, a2  ̧0 

 ʂ (a1f1, a2f1, f2ȟȣȟÆn,t), =    ʂ (f1, f1, f2ȟȣȟÆn,
21 Ŭ ,Ŭ 

t
) 

(I5) for all tÍR with t ¢ 0 ȟʂ (f1,f1, f2ȟȣȟÆn,t) = 0    

(I6) for all tÍR with t π  ʂ (f1,f1, f2ȟȣȟÆn,t) = 1 if       
f1ȟȣȢÆn are linearly dependent. 
(I7)  ʂ(f1,g, f2ȟȣȟÆn, t) is invariant under any permutation of  (f 2ȟȣȟÆn) 

(I8) "t > 0  ʂ(f1, f1, f2ȟȣȟÆn, t) 

  = ʂ (f2, f2, f1, f3,ȣȟÆn, t)  
(I9)ʂ(f1,g,f2ȟȣȟÆn, t) is a monotonic  
non-decreasing   function  of  ᴇ    and ÌÉÍOʂÆȟÇȟ ÆȟȣȟÆȟÔ  = 1 

Then h is said to be the 2- fuzzy n-n inner product F(X)
n
 and the pair (F(X)

n
 ,ʂ) is called  

2 - fuzzy n-n b-semi inner product space. 
 

Definition 3.4: In a 2 fuzzy n-n b-inner product space, define ÈȟÈȠÄ  = inf { t: ʂ(ÆȟÇȟ ÆȟȣȟÆȟÔ)²d}. 

 
Definition 3.5:  Let (F(X

n
ɊȟʉɊ ÂÅ Á ά-fuzzy n-n inner product space . If {hi} are linearly independent in F(X

n
), 

then {h i} is said to be a b-orthogonal set if for d ɴ F(X
n
), 

ÈȟÈȠÄ =1   if i=j  

 = 0  otherwise 
 
Definition 3.6: Let (F(X

n
), ) be a 2-fuzzy n-n inner product space over K and dɴ  F(X

n
) then 

a) A sequence {fn} in F(X
n
) is said to be b-Cauchy sequence if for every ʀ > 0 there exists N>0 such that for 

every m,n ² N, Æ ÆȟÄȟȣȟÆ ‐ 

b) F(X
n
) is said to be b-Hilbert if every b -Cauchy sequence is convergent in 2-fuzzy n-n-b semi inner product 

space. 
 
4ÈÅÏÒÅÍ έȢαɉ"ÅÓÓÅÌȭÓ )ÎÅÑÕÁÌÉÔÙɊȡ Let (F(X

n
), ) be a 2-fuzzy n-n-b inner product space over the scalar 

field K, then    

В ȿ ὬȟÇȠÄ ȿ ᴁÈȟÄȟÆȣȟÆᴁ which holds for any h  ɴF(X
n
) whenever  

       Ç,d  ɴF(X
n
) such that d ɴ span{ÇȟȣȟÇ}and       ÇȟÇȠÄ  = 0 if  i j and  

      ÇȟÇȠÄ = 1 if i=j 
 
ἜἺἷἷἮȡ By definition,  
           

 ᴁÈȟÄȟÆȣȟÆᴁК ÉÎÆ ɕÔȡʉɉÈȟÄȟÄȟÆȣȟÆ,Ô) ² ʂɖ ÁÎÄ ÄКɫ ɼ Ç 

where ɼКÉÎÆɕÔȡʉɉÈȟÄȟÇ,ÆȣȟÆ,Ô)²ʂɖ 
Consider 

ᴁÈȟÄȟÆȣȟÆᴁ = inf ɕÔȡʉɉÈȟÄȟÄȟÆȣȟÆ,Ô)²ʂɖ 

К ÉÎÆɕ ÔȡʉɉÈȟ ɫ ɼ Ç , ɫ ɼ Ç,ÆȣȟÆ,Ô)²ʂɖ ² ÎÕ ÉÎÆ ɕÔȡÉÎÆ ɕÔȡʉɉÈȟ ɼ Ç, ɼ Ç,ÆȣȟÆ,Ô)       

                                                                        ² ʂɖ 

= ÎÕ  ÉÎÆ ɕÔȡÉÎÆ ɕ ÔȡʉɉÈȟ Ç , Ç,ÆȣȟÆ,
ȿ ȿ

)  

                                                                        ² ʂɖ 
 = ÎÕ inf {ȿ ɼȿÔȡÉÎÆ ɕ ÔȡʉɉÈȟ Ç    

                                                , Ç,ÆȣȟÆ,Ô)²ʂɖ 
3ÉÎÃÅ ʉɉÈȟ Ç , Ç,ÆȣȟÆ,Ô) = 1 
ᴁÈȟÄȟÆȣȟÆᴁ² ÎÕ ȿ ɼȿ 
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Since ɫȿ ɼȿ  

= ÓÕÐ ɕÉÎÆ ɕ ÔȡʉɉÈȟ Ç , Ç,ÆȣȟÆ,Ô) ² ʂɖ 

It  follows that В ȿ ὬȟÇȠÄ ȿ ᴁÈȟÄȟÆȣȟÆᴁ 

 
Theorem 3.8: If {Ç  is a b-orthonormal set in a 2-fuzzy n-n-b-Hilbert space and if h  ɴF(X

n
)   

then the set S  = {Ç: ὬȟÇȠÄ 0} is either empty or countable 
 
Proof: Suppose ὬȟÇȠÄ  = 0 then the set S is empty.If ὬȟÇȠÄ 0 we need to prove that S is countable. 
For each positive integer n consider the set, 

3={Ç : ȿ ὬȟÇȠÄ ȿ
ᴁȟȟȣȟᴁ

 } 

"Ù "ÅÓÓÅÌȭÓ ÉÎÅÑÕÁÌÉÔÙȟ В ȿ ὬȟÇȠÄ ȿ ᴁÈȟÄȟÆȣȟÆᴁ 

If the set 3 contains n or more than n  then, elements of F(X
n
)  В ȿ ὬȟÇȠÄ ȿ ᴁÈȟÄȟÆȣȟÆᴁ 

×ÈÉÃÈ  ÃÏÎÔÒÁÄÉÃÔÓ "ÅÓÓÅÌȭÓ ÉÎÅÑÕÁÌÉÔÙȢ 
Therefore 3 should have at most n-1 elements (i.e) 3 is a finite set.  
By definition of 3, S=ẕ 3ȢSince countable union of finite sets is countable S is countable. 
 
Definition 3.9: Let (F(X

n
),ᴁȢȟȣȟȢᴁ) be a 2-fuzzy b-n-n-normed space. Let W be a subspace of F(X

n
), and 

d ɴF(Xn) be fixed. Then a map T:WxἂÄἃO K is called a b-linear functional on WxἂÄἃ whenever for every f,g ɴ W 
and k Kɴ, 
(i)   T(f+g,d) = T(f,d) + T(g,d) 
(ii)  T(kf,d)=kT(f,d)  
A b-linear functional is said to be bounded if there exists a positive real number M  0 such that  
ȿ4ÆȟÄȿ  MᴁÆȟÄȟÆȟȣȟÆᴁ 
It can be seen that  
ᴁ4ᴁ = sup{ȿ4ÆȟÄȿ;ᴁÆȟÄȟÆȟȣȟÆᴁ 1} 
ᴁ4ᴁ = sup{ȿ4ÆȟÄȿ;ᴁÆȟÄȟÆȟȣȟÆᴁ 1} 
ᴁ4ᴁ = sup 
{ȿ4ÆȟÄȿ/ᴁÆȟÄȟÆȟȣȟÆᴁ ȠᴁÆȟÄȟÆȟȣȟÆᴁ 0} 
And ȿ4ÆȟÄȿ ᴁ4ᴁᴁÆȟÄȟÆȟȣȟÆᴁ 
For   a  fuzzy    n-n-normed space (F(X

n
),ᴁȢȟȣȟȢᴁ) and d ɴ F(X

n
),denote  &8  ᶻ to be the 2 fuzzy n-n Banach 

space of all bounded b-linear functionals on F(Xn) xἂÄἃ where ἂÄἃ is the subspace of F(X
n
) generated by d. 

 
Theorem 3.10 (Riesz): Let (F(X

n
), ) be a 2-fuzzy n-n inner product space and {Ç} be a b-orthonormal set 

in F(X
n
) and Ë Kɴ then 

1) If ɫËÇ converges to some h in the 2-fuzzy n-n semi normed space (F(X
n
), ᴁȢȟȣȟȢᴁ) then ὬȟÇȠÄ  = 

Ë for each n and ɫȿËȿ Њ 
2) If F(X

n
) is a 2-fuzzy n-n b-Hilbert space and ɫȿËȿ Њ then ɫËÇ converges to some h in the 2 fuzzy n-n 

b-semi normed space (F(X
n
), ᴁȢȟȣȟȢᴁ) 

 
Proof:  
1) If ɫËÇ converges to some h in F(X

n
), then h = ɫËÇ, since {Ç} is a b-orthonormal set it is obvious that   

ὬȟÇȠÄ  = Ë for each i. 

"Ù "ÅÓÓÅÌȭÓ ÉÎÅÑÕÁÌÉÔÙ В ȿ ὬȟÇȠÄ ȿ ᴁÈȟÄȟÆȣȟÆᴁ 

Therefore ɫȿËȿ Њ 
2) For m=1,2,3,..  let È =В ËÇ 
For m j ,È -È = В ËÇ 

We have È ÈȟÄȟÆȣȟÆ   

= È ÈȟÈ ÈȠÄ  

= В ËÇ Њ 

Therefore {È } is a b-Cauchy sequence in F(X
n
), and since F(X

n
) is a 2-fuzzy n-n Hilbert space, {È } converges 

to some h in F(X
n
) 

 
Theorem 3.11:  Let {Ç} be a  b-orthonormal basis in a 2 fuzzy b-n-n Hilbert space F(X

n
), then for every h in 

F(X
n
), h = ɫ ὬȟÇȠÄ Ç 
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Proof: Since {Ç} is a b-orthonormal basis in F(X

n
), {Çɖ ÉÓ Á ÃÏÕÎÔÁÂÌÅ ÓÅÔȢ "Ù "ÅÓÓÅÌȭÓ ÉÎÅÑÕÁÌÉÔÙ ×Å ÈÁÖÅȟ 

В ȿ ὬȟÇȠÄ ȿ ᴁÈȟÄȟÆȣȟÆᴁ 

which implies that ɫ ὬȟÇȠÄ Ç converges to some f in F(X
n
), 

(i.e) f = ɫ ὬȟÇȠÄ Ç, 
 Also ὪȟÇȠÄ =   ὬȟÇȠÄ ȟÇȠÄ   
= ὬȟÇȠÄ  
This implies Ὤ ὪȟÇȠÄ  = 0  

Therefore (h-f) Ṷ Ç for all n 
If f h then let r = (h-f)/ᴁÈ ÆȟÄȟÆȟȣȟÆᴁ which implies ᴁÒȟÄȟÆȟȣȟÆᴁ=1 

Since( h-f) Ṷ Ç for all n , ὶȟÇȠÄ  = 0  
Therefore {Ç} {᷾f} is a b-orthonormal set in, which contradicts the maximality of the  
 b-orthonormal set {Ç}. So f=h. Hence 
h = ɫ ὬȟÇȠÄ Ç 
 
Theorem 3.12: Let (F(X

n
) be a 2 fuzzy b-n-n Hilbert space and Tɴ &8  ᶻ, then there exists a unique f ɴ F(X

n
) 

such that T(h,d) = ὬȟὪȠὨ  and ᴁ4ᴁ = ᴁÆȟÄȟÆȟȣȟÆᴁ 
 
Proof: Let {Ç} be a b-orthonormal set 
For m=1,2,3,.. letÆ= В 4ÇȟÄÇ 
Since {Ç} is a d-orthonormal set, 
ᴁÆȟÄȟÆȣȟÆᴁ = В ȿ4ÇȟÄȿ= ɼ  
Also T(Æ,d) = В ȿ4ÇȟÄȿ= ɼ  
Since T is bounded  
ȿ4ÇȟÄȿ ᴁÆȟÄȟÆȟȣȟÆᴁ which implies ɼ ᴁ4ᴁ 
Letting mᴼЊ, В ȿ4ÇȟÄȿ ᴁ4ᴁ Њ 
Let {Ç} be  a b-orthonormal basis for F(X

n
).  

Set '  = {{Ç} ;T(ÇȟÄ π and since '  is countable let '  = {ÇȟÇȟȣȟ 

Then ɫȿ4ÇȟÄȿ Њ. Therefore by Riesz theorem ɫ4ÇȟÄÇ converges in F(X
n
). 

   Let f = ɫ4ÇȟÄÇ, we claim  
T(h,d) = ὬȟὪȠὨ  for every hɴ F(X

n
). 

Let h  ɴF(Xn), then {Ç; ὬȟÇȠÄ } is countable. 
Let it be {ÌȟÌȟȣȟ. Then  
h = ɫ ὬȟÌȠÄ Ì, that implies                 
T(h,d)=T(ɫὬȟÌȠÄ Ìȟd) 

It is sufficient to show that           
T(h,d) = ÌȟÆȠÄ  ÆÏÒ Í К Ϋȟάȟέȟȣ 
Fix m and  
let ÌȟÆȠÄ = В 4Ç,d) ÌȟÇȠÄ .  
If Ç Ì  for some Îȟ  

Then ÌȟÆȠÄ T(Ç ȟÄ) = T(Ì,d) 

If Ì Ç for some n, then ÌȟÆȠÄ = 0 
That implies T(Ì,d)=0 
Therefore T(ÌȟÄ  ὬȟὪȠὨ  for all m  
Hence T(h,d) = ὬȟὪȠὨ  
To prove uniqueness 
Let Æ,Æ Fɴ(X

n
) such that T(h,d) = ὬȟÆȠÄ  and T(h,d) = ὬȟÆȠÄ  

That implies ὬȟÆ ÆȠÄ =0 and  
hence Æ Æ 
In particular Æ ÆȟÆ ÆȠÄ  = 0 and hence Æ Æ = kd for some kɴ K 
Hence Æ ÆᶰἂÄἃ 
Therefore f is unique upto d-congruence 
Now to show that ᴁ4ᴁ = ᴁÆȟÄȟÆȟȣȟÆᴁ 
If T=0 then T(h,d) = 0 for all h and also ὬȟὪȠὨ = 0  
Therefore f and d are linearly dependent and hence ᴁÆȟÄȟÆȟȣȟÆᴁ = 0 implies  
ᴁ4ᴁ = ᴁÆȟÄȟÆȟȣȟÆᴁ 
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If T  0 then T(h,d)  0 and ὬȟὪȠὨ  0 
Therefore f  0 or f and d are linearly dependent  
Hence ᴁÆȟÄȟÆȣȟÆᴁ = ὪȟὪȠὨ   
= T(f,d) ᴁ4ᴁᴁÆȟÄȟÆȟȣȟÆᴁ 
Therefore 
 ᴁÆȟÄȟÆȟȣȟÆᴁ ᴁ4ᴁ                                                                                                                            (1) 
We also have  
T(h,d) = ȿ ὬȟὪȠὨ ȿ 
  ᴁÈȟÄȟÆȟȣȟÆᴁᴁÆȟÄȟÆȟȣȟÆᴁ 
Hence ᴁ4ᴁ = sup{ȿ4ÈȟÄȿ;ᴁÈȟÄȟÆȟȣȟÆᴁ=1} 
= sup {ȿ ὬȟὪȠὨ ȿ}  
 ᴁÆȟÄȟÆȟȣȟÆᴁ                                                                                                                              (2) 
From (1) and (2) ᴁ4ᴁ = ᴁÆȟÄȟÆȟȣȟÆᴁ 
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Abstract:  The propagation of ion-acoustic solitary waves in inhomogeneous plasma with spatial density 
gradient in ions has been investigated. The fluid equations for ions have been treated by reductive 
perturbation analysis technique. In this formulation process we have used a spaceɀtime stretched coordinates. 
The system of equations has been reduced to a modified KortewegɀdeɀVries (mKdV) equation. The soliton 
solutions are found to be affected by density gradient in ions. The effective conditions for soliton propagation 
in inhomogeneous plasma have been analysed. 
 
Keywords : Inhomogeneous Plasma, IonɀAcoustic Solitons, mKdV Equation, Solitary Waves.  

 
Introduction:  The study of nonlinear acoustic waves have a great deal of interest, both theoretically and 
experimentally, since the concept was first augmented by Washimi and Tanuity [1]

 
through a nonlinear wave 

equation known as Korteweg- de-Vries(KdV) equation [2]. As the solitons are formed with the combined effect 
of nonlinearity and dispersion, which are very stable, create neither fission nor fusion in their own interactions 
and it describes the characteristics of the interaction between the waves and the plasmas, so propagation of 
solitons are also important for many scientific observations in laboratory plasmas as well as in many other 
astrophysical     plasmas

 
[3, 4, 5, 6]. However, most of the studies on the formation of solitons were limited to 

homogeneous (uniform) plasma. In practice, inhomogeneity exists widely in plasmas both in the laboratory as 
well as in space due to the density gradient or that of temperature or it could be due to the magnetic field in 
space. So propagation characteristics are influenced significantly by plasma inhomogeneities. Sakanaka [7] and 
Tappet [8]  studied the propagation of ion acoustic waves in inhomogeneous (non uniform) plasma with warm 
adiabatic ions. The soliton propagation in weakly inhomogeneous plasma has been studied first by Asano

 
[9]

 

and then ion acoustic case by Nishikawa and Kaw
 
[10]

  
and  Gell and Gomberoff [11]. These studies

 
have an 

inconsistency due to the neglect of zeroth order quantities like ion -fluid velocity and electric field which are 
arise due to the presence of inhomogeneity. Later Rao and Verma [12]

 
eliminated these shortcomings by using 

Á ÒÉÇÈÔ ÓÅÔ ÏÆ ȬÓÔÒÅÔÃÈÅÄ ÃÏÏÒÄÉÎÁÔÅÓȭ ÁÐÐÒÏÐÒÉÁÔÅ ÆÏÒ ÔÈÅ ÓÐÁÔÉÁÌÌÙ ÉÎÈÏÍÏÇÅÎeous system. Since then, using 
these types of stretched coordinates; many researchers had studied different characteristic properties of soliton 
propagation analytically as well as in laboratory for different inhomogeneous plasma models

 
[13-23] . Very 

recently Gogoi and Deka
 
[24] have studied dust acoustic solitary waves in inhomogeneous plasma with dust 

charge fluctuations. 
 
In this  paper, we have derived a modified KdV equation in spatially inhomogeneous plasma with density 
gradient of ions. The reductive perturbation analysis of fluid equations is carried out by employing a set of 
ȬÓÔÒÅÔÃÈÅÄ ÃÏÏÒÄÉÎÁÔÅÓȭ ÁÐÐÒÏÐÒÉÁÔÅ ÆÏÒ ÓÐÁÔÉÁÌÌÙ Énhomogeneous plasma. 
 
Basic Equations:  We have considered an unmagnetised spatially inhomogeneous and collisionless plasma 
having density gradient of the ions. In this plasma model we consider that the ions are cold with thermal 
electrons. The continuity and momentum equation for this plasma model with Poisson equation are as follows: 

 ( ) + n u  = 0
n

t x

¡µ µ
¡ ¡

¡ ¡µ µ
                                                                                                                                        (2.1) 

  + u   +  = 0
u u

t x x

f¡ ¡ ¡µ µ µ
¡

¡ ¡ ¡µ µ µ
                                                                                                                                (2.2) 

  

2

2
 - e  + n  =0

x

ff ¡¡µ
¡

µ
                                                                                                                                            (2.3) 

×ÈÅÒÅ                Îˋȡ ÉÏÎ ÄÅÎÓÉÔÙ 
                           Õˋȡ ÉÏÎ ÆÌÕÉÄ ÖÅÌÏÃÉÔÙ 



Mathematical Sciences International Research Journal Volume 6 Issue 2                                 ISSN 2278-8697 

 

 

IMRF Biannual Peer Reviewed (Referred) International Journal | SE Impact Factor 2.03                       |    59  

                          ⱴ̀ ȡ ÅÌÅÃÔÒÏÓÔÁÔÉÃ ÐÏÔÅÎÔÉÁÌ  
                          and x and t are space and time variables. 
 
We normalized the plasma parameters as  

  
2

e e 0 e
2

i i 00

n KT KT 4  n KT
n  = ,    u  = u  ,    =  ,    t  = t ,     x = x 

m m 4 nn

e
e e

p
f f

p
è ø¡ ¡ ¡ ¡ ¡
é ùê ú

 

where 
0n is the ion density of the equilibrium state. 

The normalized forms of the above equations are 

( ) + nu  = 0
n

t x

µ µ

µ µ
                                                                                                                                             (2.1a) 

 + u  +  = 0
u u

t x x

fµ µ µ

µ µ µ
                                                                                                                                     (2.2a) 

2

02
 - n e  + n =0

x

ffµ

µ
                                                                                                                                            (2.3a) 

 
Derivation and Solution of the Modified KdV Equation:  In order to investigate the propagation 
characteristics of solitary waves for fast and slow modes, we derive a modified KdV (mKdV) equation for our 
present plasma model. For this,   a set of spatial stretched coordinates

 
[25], is used which is appropriate for 

specially inhomogeneous plasma, along with the zeroth order fluid velocities as  

2 

0

x
  - t  ,      = xx e t e
l

å õ
= æ ö
ç ÷

                                                                                    (3.1) 

×ÈÅÒÅ ʇ ÉÓ ÅØÐÁÎÓÉÏÎ ÐÁÒÁÍÅÔÅÒ ÁÎÄ 0l is the phase velocity of the ion-acoustic wave which will be 

determined later in a self consistent manners. 

Since   0n  and  0l  are independent of t, we have 

0 0 0
n l

x x

µ µ
= =

µ µ
                                                                                                                                       (3.2) 

Substituting equations (3.1) and (3.2) into equations (2.1) ɀ (2.3) we get 

( ) ( )
0

1
0

n
nu nue

x l x t

µ µ µ
- + + =
µ µ µ

                                                                                                 (3.3) 

0 0

1
0

u u u u
u

f f
e e

x l x t l x t

µ µ µ µ µ
- + + + + =
µ µ µ µ µ

                                                                                            (3.4) 

and 

   

2 2 2 2 2
4

2 2 2

0 0

3

0
02

0

2

        ( ) 0g e nf

e f e f f
e

l x l x t t

le f
t

l t x

µ µ µ
+ + -

µ µ µ µ

µ µ
- + =

µ µ

                                                                                                 (3.5) 

To employ the reductive perturbation technique [1], the plasma parameters n, u and f are expressed as a 

power series in as 
2 3

0 1 2 3 =  . . .f f f f fe e e+ + + +                                                                                                    (3.6)  

where  n, u and   f fº and  0n  0u  and  0f are the plasma parameters in unperturbed state.  

From the zeroth-order equations of (3.3) ɀ (3.5) together with eqn. (3.2), we get 0 0
u

x

µ
=

µ
 and     0f=0 (3.7) 

Now using (3.6) into equations (3.3) ɀ (3.5), the lowest order coefficients of e gives  
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( )0 01 1 1
0 0

0 0

0
n nn u n

n u
x l x l x t

µ µ µ µ
- + + + =
µ µ µ µ

  (3.8)                                          

0 0 01 1 1
0

0 0

1
0

u uu u
u

ff

x l x t l x t

µ µµ µ µ
- + + + + =
µ µ µ µ µ

                                                        (3.9)                                               

0 1 1 0n nf- + =                                                                                             (3.10)                                                    

Integrating these equations and using boundary conditions 0 0 1 1 1, 0,   u n uf f = =  and   
0 0, 1n l  as   

x  ́yields          

( )

1 1

0 0
1 1 0 0 0 0

0 1

1 0 1

   =n

u Pn Q

u
u u u

u P R

n n

x

f
f l l x

t t

x

f

= - û
î

µ µå õî= - - + îæ ö
µ µç ÷ü

î-
î

= îý

                                                                                   (3.11)              

where 

    

( )0 0 0
0 0

0 0

0 0
0 0

,  Q = ,  

R = 

u
P n u

n n

u
u

l l

t

f
l

t t

- µ
=

µ

µ µå õ
+æ ö

µ µç ÷

                                                                                      (3.12) 

Using equation (3.9) with simple algebra, we get 

        0
1 2 2

0 1

Pn Q R

P n
f

+
=

-
                                                                                                           (3.13)                                                           

 In equation (3.13) we see that the left hand side is a first order perturbation while the right hand side contains 

only zeroth-order quantities. Thus, in order to obtain nonsecular solution of , numerator and denominator 

of equation (3.13) must be equal to zero separately
 
[3]. These yields 

                   
( )

2

0 0

0 0

1,  

1

u

u

l

l

- =

Ý = °
                                                                                                                    (3.14)                                                  

and  

                    ( )2 0 0 0 0
0 0 0 0 0

0

0
u n

n u
n

l f
l l l

t t t

µ µ µ
+ - + =

µ µ µ
                                                                         (3.15)     

which is a self consistent relation between   0n  and    0u .   Eq. (3.14) shows the existence of two types of phase 

velocities, fast and slow, corresponding to which two types of waves may be possible. The positive sign and 
negative signs in the right side give the fast mode and slow mode respectively. 
For second order ofe, we obtain the following equations 
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and                  
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Using equation (3.14), we can eliminate all the second- order quantities from above three equations exactly. 

Substituting for 1n and 1u  in terms of  1f from equation (3.11) into equations (3.16) - (3.18), we get the following 

modified KdV equation as 

                         

3

1 1 1
1 13

0A B C
f f f

f f
t x x

µ µ µ
+ + + =

µ µ µ
                                                            (3.19) 

where      
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                                                                    (3.20) 

        Here A, B, and C are all functions oft. Eq. (3.19) is a modified form of KdV(mKdV) equation as the term 

with coefficient C is an additional term (inh omogeneity)  which arises due to the presence of density gradient 
in the plasma. In order to obtain the solitary wave solution of eq. (3.19) in inhomogeneous plasma, we use a 
variable transformation as 

          1 0exp( )Cnf y= -                                                                                                  (3.21) 

Using this variable transformation Eq. (3.19) transforms to a well known form of KdV equation as 

     

3
*

3
0A B

y y y
y

t x z

µ µ µ
+ + =

µ µ µ
                                                                                               (3.22) 

where  
*

0exp( )A A Cn= - . 

              We have assumed that the nonlinear co-efficient functionally depends on the space of the plasma. For 
the sake of simplicity of mathematical calculations, the variations are assumed to be negligibly small as 
compared to the scale length and due to this it is assumed that all parameters could be locally constant. Under 

these situations, to obtain a steady state solution of the Eq. (3.22), we introduce a new variable X Ux t= -  

with respect to a frame moving with velocityU  which transforms the pair variable ( ),  x t to a single variable

X . We have obtained the solution of this equation following the method of Kodama and Taniuty [26] as  

     2Sechm

X
y y

å õ
= æ ö

Wç ÷
,                                                                                                       (3.23) 

where the amplitude 3
m

U

A
y

*
=  and the width  

1

24B

U

å õ
W=æ ö
ç ÷

. 

  
Results and Discussion:  We now investigate the influence of the inhomogeneity(density gradient) on the 
propagation of ion acoustic solitary waves in fast as well as in slow modes. In Figs. 1 & 2, the variations of 

soliton amplitude mY  are shown against the ion number density 0n  for three different values of ion fluid 

velocity ( )0 0.1,  0.15,  0.2u = . Fig. 1 shows the increase of soliton amplitude (fast mode) with nearly constant 

rate for increasing values of ion number density n0 and ion fluid velocity u 0. In case of slow mode solitary wave, 
amplitude decreases with nearly constant rate for increasing values of ion number density n0 and ion fluid 
velocity u0. 

The variations of soliton width against the ion number density 0n  for three different values of ion fluid velocity

( )0 0.1,  0.15,  0.2u =  are shown in Figs. 3 & 4. It is shown that the soliton widths decrease with increasing 

values of ion number density n0 for fast as well as slow modes. In case of fast mode, for greater values of u0, 

soliton widths are smaller (Fig. 3) which is opposite in case of slow modes (Fig. 4). 
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Fig.1 (Fast soliton): Variations of Amplitude 

my Against Density Gradient 
0n For Different 

Values of  0( 0.1,  0.15,  0.2)u =  

 
Fig.2 (Slow soliton): Variations Of Amplitude 

my Against Density Gradient 0n For Different 

Values of 0( 0.1,  0.15,  0.2)u = . 

      

  
Fig.3 (Fast Soliton): Variations of Width W

Against Density Gradient 0n for Different Values 

of 0( 0.1,  0.15,  0.2)u =  

Fig.4 (Slow Soliton): Variations of Width Wagainst 

Density Gradient 0n for Different  Values of 

0( 0.1,  0.15,  0.2)u =  

 
Conclusion: In summary, a modified KdV (mKdV) equation is derived by employing a set of suitable stretched 
coordinates and reductive perturbation technique.  A solitary wave solution of the mKdV equation is derived. 
The propagation characteristics in inhomogeneous plasmas are investigated for fast and slow modes phase 
velocities. The numerical results show that the inhomogeneity parameter has remarkable influence on the 
propagation characteristics of ion acoustic waves. 
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Abstract: Graph Theory provides plenty of models fitting in practical situations arising out of real world 
problems. Getting students' feedback and analyzing it is a crucial factor. Signed graph is a graph whose edges 
are assigned positive or negative sign. Signed graphs are also known as Sociograms since they have got a lot of 
applications to Sociology. This paper presents a part of the analysis of students' feedback on  ' using signed 
graph models. The procedure to calculate weightages and average percentage weights are described and 
number of positive edges in the associated signed graph is taken as the main measuring scale. 
 
Keywords: Signed graph, Balanced signed graph, Graphical model, Weightages. 

 
Introduction: For any educational institution, among the assessments and accreditations the maximum 
weightage should be given to that by students. Student perceptions of the qualities of their learning experience 
represent a very important element of effective assessment particularly when they are systematically collected 
from a representative sample of students. The governing body of an institution may feel satisfied only when 
ÅØÐÅÃÔÁÔÉÏÎÓ ÁÒÅ ÍÅÔ ÅØÃÅÅÄÅÄ ÂÙ ÔÈÅ ÓÔÕÄÅÎÔȭÓ ÐÅÒÃÅÐÔÉÏÎ ÏÆ ÔÈÅ ÃÁÍÐÕÓ ÒÅÁÌÉÔÙȢ  
 
For this purpose student feedback is collected annually in our college. Such constructive measures should 
always be moved to a higher level. It is strongly felt that the information obtained from students of many 
colleges will help us to improve the conditions that contribute to learning and development and to the quality 
of the experience of those who will come after us. 
 
4ÈÉÓ ÍÏÔÉÖÁÔÅÄ ÕÓ ÔÏ ÔÁËÅ Á ÐÒÏÊÅÃÔ ÏÎ ÔÈÅ ÔÏÐÉÃ Ȱ%ØÐÅÒÉÅÎÃÅ ÔÈÅ ÃÏÌÌÅÇÅ !ÍÂÉÅÎÃÅȡ ! ÓÔÕÄÙ ÁÍÏÎÇ ÔÈÅ ÃÏÌÌÅÇÅ 
ÓÔÕÄÅÎÔÓȱ !Ó ÔÈÅ ÆÉÒÓÔ ÓÔÅÐȟ ÔÈÅ ÑÕÅÓÔÉÏÎÎÁÉÒÅ ×ÁÓ ÐÒÅÐÁÒÅÄ ×ÉÔÈ ÔÈÅ ÆÏÌÌÏ×ÉÎÇ ÅØÐÅÃÔÁÔÉÏÎÓȢ 
1. It should be answerable within 30 minutes. 
2. It should help the respondents to learn some valuable things about themselves. 
3. The answers should provide a kind of self-portrait and hence make them understand how they are 

benefitting from their college experience. 
4. It should cover all the services and supports that students identified as necessary to support their academic 

studies. 
 
As the second step, survey was carried out among students belonging to 30 colleges selection was purely on 
accessible basis. Apart from this, a localized survey was simultaneously carried out. Ten departments of our 
college were taken for study and from each department 5 responses were received. Following data collection, 
the data needs to be critically analyzed. For any research, data analysis is very important as it provides an 
explanation of various concepts, theories, framework and methods used. It eventually helps in arriving at 
conclusions and proving the hypothesis. 
 
Data analysis helps in structuring the findings from different sources of data. It is very helpful in breaking a 
macro problem into micro parts. Data analysis acts like a filter when it comes to acquiring meaningful insights 
out of huge data set. To study graph theory without being aware of its application is to miss a major part of its 
substance. The art of model formulation in science and engineering by using graph is a fruitful common 
aspect. Analyzing graphs adds much too theoretical part of Mathematics whereas analyzing a survey using 
graphs adds so much to applied part of it.  
This paper presents the applications of Graph theoretic tools to analyses the data. 
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Calculation of Weightages and Deviations Procedure:  
Step1: Pinpoint the factor to be focused. 
Step2: Choose all the questions related to the factor under consideration. 
Step3: For any question scores are allotted as follows  
 
Response          Score          Number of Responses 
Excellent              1                       ne 
Good                   0.75                   ng 
Fair                      0.50                  nf 
Worst                  0.25                  nw 
Weightage = ne + 0.75ng + 0.5nf + 0.25nw 
Step4: Total weightage = sum of the weightages of questions chosen in step2. 
Step5: Deviation between two categories = absolute difference between total Weightages of those categories. 
Step6: Average deviation percentage = (Deviation × 100) / (Number of responses × Number of 
question)  
The main aim of our project is to compare the available facilities and their levels. So we focus on the factor, 
facilities. 
  
There are 15 questions in our questionnaire related to this factor under consideration. In the following table 
gives the weightages of all the 15 questions for ten courses taken for study. 
 

Example: 1 

Discipline  
 

PG 
(Che) 

MCA MBA 
UG 

(Maths)  
PG 

(Tamil)  
PG 

(Maths)  
PG 

(Com)  
PG 

(Bio -che) 
PG 

(Eng)  
PG 

(His)  

1 4 4 4 3 3.25 4 4.75 3.75 3.75 4.25 

2 3.75 3.25 3.5 3.25 3.75 4.75 4.5 3.25 3.5 2.5 

3 3.25 2.25 3 2.25 4 2.25 3 2.75 2.25 4.25 

4 3.5 2.75 3.25 1.75 2.75 4.5 4.75 3 3.5 3.25 

5 2.5 3 4 4 4 4.25 4.5 3.75 3 4.25 

6 3.25 3.75 4.25 3.5 4 4.5 5 3.25 3.25 3.25 

7 3.75 3.25 4.25 3.5 4 5 5 4.5 3.25 3 

8 3.75 4 3.5 3.5 3.5 3.75 4.5 4 3.5 3 

9 4 2.75 3.75 2.25 2.25 2.5 4 3.75 3 2 

10 4 2.5 4 2.75 3 2.5 2.5 3.5 2 2.25 

11 3.25 2 3.25 3 2 4.5 2.5 2.5 3.5 2 

12 3.5 3.25 3 4.25 3.75 4 3.75 3.25 2.25 4 

13 3.25 3 3 3 3.25 2.75 3.25 2.5 3.5 4 

14 3 4 3.25 3 3.5 3.5 4.5 3.5 3.75 3 

15 3 2.25 3.25 2.5 4.75 3.5 2.75 3.75 2.5 2.25 

Total  51.75 46 53.25 45.5 51.75 56.25 59.25 51 46.5 47.25 

 
Example: 2  
Deviation between two disciplines = absolute difference between total weightages of those 
disciplines.  

Deviation(Self -Financed):  

Discipline  PG(Che) MCA MBA UG(Maths)  PG(Tamil)  

PG(Che) 0 5.75 1.5 6.25 0 

MCA 5.75 0 7.25 0.5 5.75 

MBA 1.5 7.25 0 7.75 1.5 

UG(Maths) 6.25 0.5 7.75 0 6.25 

PG(Tamil) 0 5.75 1.5 6.25 0 

 
Deviation has been calculated taking all the responses for all the questions. So we take 
Average deviation percentage= (Deviation × 100) / (Number of responses × facilities)  
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Average Deviation Percentage (Self -Financed):  

Discipline  PG(Che) MCA MBA UG(Maths)  PG(Tamil)  

PG(Che) 0 7.67 2 8.34 0 

MCA 7.67 0 9.67 0.67 7.67 

MBA 2 9.67 0 9.67 2 

UG(Maths) 8.34 0.67 9.67 0 8.34 

PG(Tamil) 0 7.67 2 8.34 0 

 
Signed Graph Model:  A signed graph is a graph whose arcs are labeled by signs +and ɀ. A network is cycle 
balanced if the product of the weights of the lines of every cycle in it is positive. 
 
Procedure to Construct Signed Graph Model: Represent categories by vertices join two vertices by a 
positive edge if deviation percentage is below 10%. Join two vertices by a negative edge if deviation percentage 
is above 20%.We like to analyze the significance of deviation between categories. Depending on the situation 
we set some levels. If deviation is considerably small, then we join the corresponding categories by a positive 
edge. We set a range for deviation which need not be considered. If it exceeds the upper limit, use negative 
edge to join the categories. Obviously number of positive edges in the signed graph model can be used to 
measure the quality of factor under consideration. 
 
Example: 3 
The signed graph model for example2 is given below. 
 

 
Figure 1: Deviation Graph (Self -Financed)  

The graph happens to be a complete graph with positive edges. This indicates that all the facilities are equally 
enjoyed by all the departments. 
 

Example: 4  
Average Deviation Percentages (Aided)  

Discipline  PG(Maths)  PG(Com)  PG(Bio -che) PG(Eng) PG(His)  

PG(Maths) 0 4 7 13 12 

PG(Com) 4 0 11 17 16 

PG(Bio-che) 7 11 0 6 5 

PG(Eng) 13 17 6 0 1 

PG(His) 12 16 5 1 0 

 

 
Figure 2: Deviation Graph (Aided)  
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Number of positive edges=5 
Percentage of positive edges=50%. 
There are a medium percentage of positive edges. This indicates that all the facilities are not equally enjoyed by 
all the departments. There is no negative edge. So disparity is not noteworthy. The reason may be the nature of 
the course. 
 
Interpersonal Relationships: The factor much more important than the facilities is the Staff - Students 
relationship. 
We give special attention to the question related to this factor. 
 

Deviation (Staff - Students):  

Discipline  
PG 

(Che) 
MCA MBA 

UG 
(Maths)  

PG 
(Tamil)  

PG 
(Maths)  

PG 
(Com)  

PG 
s(Bio -che) 

PG 
(Eng)  

PG 
(His)  

PG(Che) 0.5 1.5 0 1 0.25 1.5 1 0 0.5 0.25 

MCA 1 0 1.5 0.5 1.75 0 0.5 1.5 1 1.75 

MBA 0.5 1.5 0 1 0.25 1.5 1 0 0.5 0.25 

UG(Maths) 0.5 0.5 1 0 1.25 0.5 0 1 0.5 1.25 

PG(Tamil) 0.75 1.75 0.25 1.25 0 1.75 1.25 0.25 0.75 0 

PG(Maths) 1 0 1.5 0.5 1.75 0 0.5 1.5 1 1.75 

PG(Com) 0.5 0.5 1 0 1.25 0.5 0 1 0.5 1.25 

PG(Bioche) 0.5 1.5 0 1 0.25 1.5 1 0 0.5 0.25 

PG(Eng) 0.5 1.5 0 1 0.25 1.5 1 0 0.5 0.25 

PG(His) 0.75 1.75 0.25 1.25 0 1.75 1.25 0.25 0.75 0 

 
Average Deviation Percentages (Staff - Students):  

Discipline  
PG 

(Che) 
MCA MBA 

UG 
(Maths)  

PG 
(Tamil)  

PG 
(Maths)  

PG 
(Com)  

PG 
(Bio -che) 

PG 
(Eng)  

PG 
(His)  

PG(Che) 0 20 10 10 15 20 10 10 0 15 

MCA 20 0 30 10 35 0 10 30 20 35 

MBA 10 30 0 20 5 30 20 0 10 5 

UG(Maths) 10 10 20 0 25 10 0 20 10 25 

PG(Tamil) 15 35 5 25 0 35 25 5 15 0 

PG(Maths) 20 0 30 10 35 0 10 30 20 35 

PG(Com) 10 10 20 0 25 10 0 20 10 25 

PG(Bioche) 10 30 0 20 5 30 20 0 10 5 

PG(Eng) 0 20 10 10 15 20 10 10 0 15 

PG(His) 15 35 5 25 0 35 25 5 15 0 

 

 
Figure 3: Staff - Students Relationship  
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Number of positive edges=16       Number of negative edges=12 
Percentage of positive edges=35.5%     Percentage of negative edges=26.67% 
 
The prevailing situation according to the survey suggests to go for yet survey for this single factor. All types of 
counseling are provided. In spite of that there is a discrepancy in staff - ÓÔÕÄÅÎÔȭÓ ÒÅÌÁÔÉÏÎÓÈÉÐȢ 3ÔÕÄÅÎÔÓ ÍÕÓÔ 
be made to undergo a short course in assessing the personal relationship. After that a survey can be carries out. 
Based on that new survey remedial measures can be taken. 
 
Conclusions: In this paper we have given number of positive edges. Plenty of other concepts such as balanced 
signed graph consistency of signed graph etc. are available in lecture. These concepts can be utilized for any 
indences study. 
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Abstract: We investigate the effect of thermal radiation on steady convective heat transfer flow of a nanofluid 
in a vertical channel  in the presence of heat generating sources. Analytical closed form solutions are obtained 
for both the momentum and the energy equations. Graphs are used to illustrate the significance of key 
parameters on the nanofluid velocity and temperature distributions.  
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Introduction: Nanofluids are solid-liquid composite materials consisting of solid nanoparticles or nanofibers, 
with sizes typically on the order of 1ɀ100 nm, suspended in a liquid. Nanofluids are characterized by an 
enrichment of a base fluid like water, toluene, ethylene glycol or oil with nanoparticles in variety of types like 
Metals, Oxides, Carbides, Carbon, Nitrides, etc. Today nanofluid are sought to have wide range of applications 
in medical application, biomedical industry, detergency, power generation in nuclear reactors and more 
specifically in any heat removal involved industrial applications. The ongoing research ever since then has 
extended to utilization of nanofluids in microelectronics, fuel cells, pharmaceutical processes , hybrid-powered 
engines, engine cooling, vehicle thermal management, domestic refrigerator, chillers, heat exchanger, nuclear 
reactor coolant, grinding, machining, space technology, Defense and ships, and boiler flue gas temperature 
reduction [Agarwal et al. (2011)]. Indisputably, the nanofluids are more stable and have acceptable viscosity and 
better wetting, spreading, and dispersion properties on a solid surface [Akbarinia et al. (2011), Nguyen et al. 
(2007)]. Several reviews [Ghadimi et al.(2011), Mahabudul et al. (2012)] on nanofluids with respect to thermal 
and rheological properties have been reported.  
 
Thus, nanofluids have an ample collection of potential applications in electronics, pharmaceutical processes, 
hybrid -powered engines, automotive and nuclear applications where enhanced heat transfer or resourceful 
heat dissipation is required. In view of these, [Kiblinski et al. (2002)] suggested four possible explanations for 
the anomalous increase in the thermal conductivity of nanofluids. These are nanoparticles clustering, 
Brownian motion of the particles, molecular level layering of the liquid/particles interface and ballistic heat 
transfer in the nanoparticles. Despite a vast amount of literature on the flow of nanofluid model proposed by 
[Buongiorno (2006)], we are referring to a few recent studies [Alsaedi et al.(2012), Hajipour and Dekhordi 
(2012),. However, we are following the nanofluid model proposed by [Tiwari and Das (2007)], which is being 
used by many current researchers [Hamad and Ferdows (2012), Hamad and Pop (2011), Norifiah et al. (2012)] on 
various flow fields.  
 
The study of MHD flow and heat transfer due to the effect of a magnetic field in a rotating frame of reference 
has attracted the interest of many investigators in view of its applications in many industrial, astrophysical 
(dealing with the sunspot development, the solar cycle and the structure of a rotating magnetic stars), 
technological and engineering applications (MHD generators, ion propulsion, MHD pumps, etc.) and many 
other practical applications, such as in biomechanical problems (e.g., blood, flow in the pulmonary alveolar 
sheet). Many authors have studied the flow and heat transfer in a rotating system with various geometrical 
situations [Hickman(1957), Hide (1960), Mazumder (2012)]. [Hamad (2011)] investigated the effect of a 
transverse magnetic field on free convection flow of a nanofluid past a vertical semi-infinite flat plate. Recently, 
[Satya Narayana et al. (2013)] studied the Hall current and radiation absorption effects on MHD micropolar 
fluid in a rotating system. Some other related works can also be found in recent papers [Kameswaran et al. 
(2012), Kesavaiah et al. (2011), Rushi kumar and Sivaraj (2013), Srinivas et al. (2012)].  
 
Thermal radiation is important in some applications because of the manner in which radiant emission depends 
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on temperature and nanoparticles volume fraction. The thermal radiation effect on mixed convection heat 
transfer in porous media has many important applications such as the sensible heat storage bed, the nuclear 
reactor cooling system, space technÏÌÏÇÙȟ ÁÎÄ ÕÎÄÅÒÇÒÏÕÎÄ ÎÕÃÌÅÁÒ ×ÁÓÔÅ ÄÉÓÐÏÓÁÌȢ 4Ï ÔÈÅ ÂÅÓÔ ÏÆ ÔÈÅ ÁÕÔÈÏÒȭÓ 
knowledge (from the literature), no studies have been communicated thus far with regard to the study of flow 
and heat transfer distinctiveness of a nanofluid past a vertical plate with thermal radiation in a rotating frame 
of reference 
 
Recently [Satyanarayana et al (2011)] have studied the effect of radiation on the convective heat transfer flow of 
a rotating nanofluid past a porous vertical plate with oscillatory velocity. 
 
In thi s paper we investigate the effect of thermal radiation on  steady convective heat transfer flow of a rotating  
nanofluid in a vertical channel in the presence of heat generating sources. Analytical closed form solutions are 
obtained for both the momentum and the energy equations . Graphs are used to illustrate the significance of 
key parameters on the nanofluid velocity and temperature distributions.  
 
Formulation of the Problem: We consider the steady, three dimensional flow of a nanofluid consisting of a 
base fluid and small nanoparticles in a vertical porous channel  with thermal radiation. A uniform magnetic 
field of strength Ho is applied normal to the plate. It is assumed that there is no applied voltage which implies 
the absence of an electric field. The flow is assumed to be in the x-direction which is taken along the plane in 
an upward direction and z-axis is normal to the plate. Also it is assumed that the whole system is rotating with 

a constant angular velocity vectorW about the z-axis. The fluid is assumed to be gray, absorbing emitting but 
not scattering medium. The radiation heat flux in the x-direction is considered negligible in comparison with 
that in the z -direction. As the flow is fully developed, the flow variables are functions of z and t only. Figure. 1 
shows that the problem under consideration and the co-ordinate system. 

 
Under the above mentioned assumptions, the equation of momentum and thermal energy  respectively ,can be 
written in dimensional form as :  
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The boundary conditions are(see rf.(42&43)): 
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The properties of the nanofluids are defined as follows (see ref.(44-46)): 


