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Abstract: The primary aim of this paper is to introduce a new type of approximation space nano topologized
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measure.We provide results, examples in digraph.
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Introduction:  The most powerful notion in analysis is the concept of topological structures and their
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problems. Lellis Thivagar et al [1] intoduced nano topological space with respect to a subset X of an finite
universe which is defined interms of lower and upper approximations of X. The elements of the nano
topological space are called nano open sets.In this paper we have introduced a new sgaoano topologized
stochastic approximation space from the approximation space. We define the upper and lower probability of

an event interms of the lower and upper approximation of the event using the nano open set,nanod _ open

set, nano semi open set, nano regular open set and nano generalised open set and the results are compared.
Nano closure space in digraph is also introduced and the upper and lower probability of a subgraph of a
digraph is defined and studied.

Preli minaries:
Definition 2.1 :[6] Let U be a nonempty finite set of objects called the universe and R be an equivalance
relation on U named as the indiscernibility relation. Elements belonging to the same equivalance class are

said to indiscernible with one another.The pair (U ,R) is said to be the approximation space.
(i) The lower approximation of X with respect to R is the set of all objects, which can be for certain classified

as X with respect to R and it is denoted by U, ¢ ;(X)). That is

L.(X) = C{R(X):R(X)1 X} where R(x)denotes the equivalence class determined by x.
(i) The upper approximation of X with respect to R is the set of all objects, which can be possibly classified as
X with respect to R and it is denoted by U, (X) . Thatis

Ur(X) = G{R(XY): R(¥) X, A}
(i) The boundary region of X with respect to R is the set of all objects which can be classified neither as X nor
as notX with respect to R and it is denoted by B,(X).Thatis

Ba(X)= Un(X)- Lu(X).
Definition 2.2 : [6] Let U be the universe, R be an equivalance relation otJ and
t.(X)={ U, A, L(X), Ux(X), Bg(X)}where X1 U.Then #,(X) satisfies the following axioms
() Uand AT £,(X).
(i) The union of the elements of any subcollection of £ ;(X) isin #;(X).
(iii) The intersection of the elements of any finite subcollection of #;(X) isin #5(X).
That is 7 ;(X) is a topology on U called the nanotopology on U with repect to X. We call (U, 7 ;(X)) as the
nano topological space. The elements off ;(X) are called as nano open sets.
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Definition 2.3:  :[6] If (U, ;(X)) is a nano topological space with respect to X where X U and if A |

U ,then the nano interior of A is defined as the union of all nano-open subsets of A and it is denoted by
Nint(A). That is Nint(A)is the largest nano-open subset of A. The nano closure of A is defined as the
intersection of all nanoclosed sets containing A and it is denoted by Ncl(A). That is Ncl(A)is the smallest nano

closed set containing A.

Definition 2.4 :[6] Let (U, ¢ (X)) be a nano topological space and A U.Then Ais said to be

(i) nano semi openif A I Ncl(Nint(A))

(i) nano pre-open if A 1 Nint(Ncl(A))

(iii) nano & -openif A 1 Nint(Ncl(Nint(A))

(iv) nano regular open if A = Nint(Ncl(A))

NSO(U ,X), NPO(U ,X), Na O(U ,X) respectively denote the families of all nano semiopen, nano pre-open
and nano & -open subset of U .

Definition 2.5 :Let (U ,[R(X)) be a nano topological space and A U. Then A is said to be nano generalised

closed set (briefly, Ng - closed) if Ncl(A)I G whenever Al G where G is nano open in U R (X)).
Complement of a nano generalised closed set is called nano generalised open set.

Definition 2.6 :[2] A graph G is an ordered pair of disjoint sets (V, E), wher&/ is nonempty and E is a subset of
unordered pairs of V. The vertices and edges of a graph G are the elements of V=V(G) and E=E(G) respectively.
We say that a graph G is finite (resp. infinite) if the set V(G) is finite (resp.finite). The degree of a verx ul
V(G)is the number of edge in a graph contains a vertex u. u is called an isolated point if the degree of u is zero.
An edge which has the same vertex to ends is called a loop and the edge with distinct ends is called a link.

Definition 2.7 :[2] A graph is simple if it has no loops and no two of its links join the same same pair of
vertices. A graph which has no edge called a null graph. A graph which has no vertices is called a empty graph.

Definition 2.8 : [2] If G(V, E) is a drected graph and u,vl V, then

(i) u is invertex of v if uvi E(G).

(i) u is outvertex of v if vul E(G).

j EEEQ 4EA ET AACOAA T &£ A OAOOAQ®D E&iOE(GEO OEA 101 AAO T £ OA
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Probability in Nano Topological Spaces: Here we introduce nano topologized approximation space, nano

topologized stochastic approximation space, nanomeasure and discuss their properties.

Definition 3.1 : Let U be a non-empty finite set of objects called the universe, R be an equivalence relation on
U then (U ,R) is called the approximation space. Letf ,(A) is the nano topology associated with a subset A

of U then the triple (U, R,Z;(A)) is called the nanotopological approximation space.

Definition 3.2 : Let (U,R) be the approximation space with the equivalence relation R andz ;(A) is the
nano topology associated with a subset A of U. Letp be the probability measure with the following properties

P(A) = 0,p(U)= 1 and if B =C X; then p(B)= & p(X;). Then (U,R, p,71(A)) is called the nano
topologized stochastic approximation space.

Definition 3.3 : Let B be an event in the nanetopologized stochastic approximation space (U, R, p,Z (A))
then the nano lower and nano upper probability of B is given by
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«P(B) = p(Nint(B))
«P(B) = p(Ncl(B))

Definition 3.4 : Let B be an event in the nanetopologized stochastic approximation space (U, R, p, ;(A))
then the nano generalised lower and upper probability of B is given by

xg P(B) = p(Ngint(B))
xg P(B) = p(Ngcl(B))

Definition 3.5 : Let B be an event in the nanetopologized stochastic approximation space (U, R, p,? z(A))
then

(i) The nano measure of B is given by71(B) = ,, p(B) - v P(B)
(i) The nano generalised measure of B is given bﬁz (B) = g p(B) - ng P(B)

Proposition 3.6 : Let X and Y are events in the nanetopologized stochastic approximation space
(U, R, p,25(A)) then the nano generalised lower and upper probability of B satisfy the following properties

() wg P(R) = g P(A) =0

(i) g PU) = g PU) =1

(i) g P(X) ¢ p) ¢ o p(X)

(iv) g P(XCY) 2 g P(X) + g P(Y)
(V) ng PXCY) = g P(X) + g P(Y)
(Vi) g POXAEY) = g P(X) . g PCY)
(Vi) g POXAEY) € o P(X) . g P(Y)

Proof :

(i) Since Ngint(A) = Ngcl(A) = A .

Therefore p(Ngint(A)) = p(NgCI(A)) = p(A ) = 0. By the definition we get the result.

(i) Since Ngint(U) = Ngcl(U) =u.

Hence p(Ngint(U)) = p(Ngcl(U)) = p(U) = 1.we get the result.

(iii) Since Ngint(X) I X1 Ngcl(X).

Therefore p(Ngint(X)) ¢ p(X) ¢ p(Ngcl(X)).

From the definition we get the required result.

(iv) We know that Ngint(X CY) E Ngint(X) C Ngint(Y).

Therefore p(NgINt(X CY) 2 p(Ngint(X)) + p(Ngint(Y)). Hence the resuilt.

(v) Since Ngcl(X CY) = Ngcl(X) ¢ Ngcl(Y).

Hence p(Ngcl(X CY)) = p(Ngcl(X)) + p( Ngcl(Y)).we get the resuilt.

(vi) Since Ngint(X AY) = Ngint(X) 4 Ngint(Y).

Therefore p(Ngint(X ZAY)) =p( Ngint(X)) . p(Ngint(Y)). We get the result.

(vii) Since Ngcl(X AEY) | Ngcl(X) £ Ngcl(Y).

Therefore p(Ngcl(X AY)) ¢ p(Ngcl(X)) . p(Ngcl(Y)). We get the resuilt.

Proposition 3.7 : Let X and Y are events in the nanetopologized stochastic approximation space
(U, R, p,Z5(A)) then the nano generalised measure of X and Y satisfy the following properties

i) M(XCY) ¢ m(X) + m(Y)
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(i) m(XAY) ¢ m(X) . m(Y)

Proof :

(i) nZ(X cY) :Ng}_D(X CY) - P(XCY). By the proposition (v) and (vi) we get I7Z(X cY) ¢
ng POX) + g POY) - g P(X) - g PCY) ¢ 3(X) + mj(Y)

(ii) ng(x AY) ¢ Ng]E)(X AEY) - yg P(X AEY). By the proposition (vii) and (viii) we get ng(x AY) ¢

ng P(X) + g POY) - g P(X) . g PCY) € 3(X) . mj(Y)

Consider the experiment of choosing one card from four cards numbered from one to four.The collection of
four elements forms the outcome spaceU = {1,2,3,4}. Let R be the equivalence relation onU such that

U/R ={{1}, {2}, {3,4}} . Let A={2,3} thus
to(A = {UA {2},{2,3,4},{3,4}} . Define the variable X to be the number on the chosen card. The
following table gives the nano lower and upper probabilities of the random variable X.

X 1] 2 3 4
nP(X=X) | 0 | 1/4 0 0
PX=x) | va | 12 % 3/4

The following table gives the nano generalised lower and upper probabilities of the random variable X

X 1 2 3 4
wP(X=X) | 0 | 14 | 14 | 1/4
N POX=X) | w4 | 12 Y 1/2

To find the measure : Consider the event X {3}

* - 3 3

m(X) = X) - X)=2= =2
(X) =y p(X) -y p(X) 2 2

. — 1 1 1

MX) = g PO - g BOX) =2 - 7 =

Therefore,we get0 ¢ /75(X) ¢ m(X) ¢1.

Remark 3.9 :

a) Neither the sum of the nano lower probabilities nor the sum of nano upper probabilities equal to one.

b) Neither the sum of the nano generalised lower probabilities nor the sum of nano generalisedupper
probabilities equal to one.

c) The nano generalised measure of an event is smaller than the nano measure of an event.

Near Probability in Nano Topological Spaces: Here we find some rules to define nano jlower probability
and nano jupper probability of an event B where j represent the near open sets in nano toplogy

Definition 4.1 : Let B be an event in the nanetopologized stochastic approximation space (U, R, p,? ;(A))
then the nano j-lower probability and nano j-upper probability of B is given by

n P(B) = p(Njint (B))

x P(B) = p(Nicl (B))
where ji {a,sr}

Proposition 4.2 : Let B be an event in the nanetopologized stochastic approximation space (U, R, p,Z ;(A))
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then the implication between the nano j- lower probability is given by the following diagram for all j
I {a,sr,q}

W P(B) ¢ sP(B) ¢ , P(B) ¢ \ p(B) ¢ , p(B)

Proof : The proof is obvious.

Proposition 4.3: Let B be an event in the nanetopologized stochastic approximation space (U, R, p, ;. (A))
then the implication between the nano j- upper probability is given by the following diagram for all j
| {a,sr,0}

ng P(B) ¢ s P(B) ¢, p(B) ¢ p(B) ¢ , p(B)

Proof : The proof is obvious.

Probability in Digraph via Nano g -open sets: Here we introduced nano closure space and nano generalised
lower and upper probabilities on a digraph.

Definition 5.1 : Let G=[V(G), E(G)] be a digraph andCl;: P[V(G)]- P[V(G)] an
operator such that
() It is Gm-closure operator if Cl [V(H)] = Clg[Cls(.....Cl(V(H))] m times, forevery subgraph

HI G.
(ii) Itis called G- topological closure operator if Cl, +l[\/(H)] = Clg [V(H)] forall H I G.

Definition 5.2 : Let Gm = (G,Cl;_) be an approximation space where G be a nonempty finite universe graph
m

and Cl; be the closure general relation on G andf is the Gm-topological space associated with theGm.
m

CCy
Then the triple Gm = [G,ClG ,I‘CGm] is called as Gm topological closure approximation space.

Definition 5.3: Let Gm = [G,ClG,z‘CG ] be a Gm topological closure approximation space and H be any
m

subgraph of G then[V (G),7, (V(H)] is called the nanoCIG, topological space.
m

Definition 5.4 : Let [V (G),¢, (V(H)] be the NnanoCIG, topological space whereG,, = [G,Cl; L, 1bethe
m
G,, topological closure approximation space and H be any subgraph of G.ThM(G),Z, (V(H), p] is called
m

the nanoCIQn topological stochastic approximation space.

Definition 5.5: Let K be an event in the I’lat’lOCl(Eln topological stochastic approximation space

[\/(G),I‘Gm(\/(H ), p] then the nano generalised lower and upper probability is given by
ng P(K) = p(Ngint(K))
v P(K) = p(Ngcl(K))

Definition 5.6 : Let K be an event in the I’lat’lOClC-;\n topological stochastic approximation space
[V(G),t; (V(H), p] then the nano generalised measure of K is given byn(K) = Ngf)(K) - ng P(K)
m —_

Example 5.7 : Consider the following graph G=[V(G),E(G)] WhereV(G)z{Vl,Vz,V3,V4,V5} and E(G)=
{(V2 Vo), (Vi V), (Vg V) (V2 V), (V2 V), (Vi Vi)
[CG\n = {G’A 1{V1}’ {Vl’vz}’ {V1’V3}’ {V1’V2’V3}’ {V1’V2’V3’V4}}
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Let H={V;, V} and ¢ = {V(G),A {Vi}, {3, Vah {Vy, Vi, Vi i}

v v v, V; |V, A
wPV=V) | 15| 1/5 |1/5| o | 1/5
WPV =V) | 25 | U5 | 25| 15| 15

Proposition 5.8 : Let K be an event in the nanoCIGn topological stochastic approximation space
V(G),t; (V(H), p] then the nano generalised lower and upper probability of K satisfy the following
propertiesm

() g PR) = g PA) =0

(i) g P(G) = g P(G) =1

(V) g P(K) ¢ p(K) ¢ p(K)

(V) ng P(K®) =2, P(K)

(Vi) g P(K®) = 2q P(K)

Proof :

(i) Since Ngint(A) = A and Ngcl(A) = A therfore p(Ngint(A))= 0 and

p(Ngcl(A))=0. Hence the result.

(i) Since Ngint(G) = G and Ngcl(G) = G therfore p(Ngint(G))= 1 and

p(Ngcl(G) )=1.Hence the result.

(i) Since Ngint(K) I K I Ngcl(K). Therefore

p(Ngint(K)) ¢ p(K) ¢ p(Ngcl(K)).Therefore we get the required result.

(V) g P(K®) = p(Ngint(K®))= p(G)- Ngcl(K)) = p(G)-p(Ngcl(K)) = £, p(K)

(v) As similar to the above case.

since Ngint(A) = A and Ngcl(A) = A therefore p(Ngint(A))= 0 and

p(Ngcl(K))=0.Hence the resuilt.

Proposition:5.9 Let K and T are events in the nanoCIC—;‘n topological stochastic approximation space
[V(G),I‘Gm(\/(H ), p] then the nano generalised lower and upper probability of K and T satisfy the following

properties

() ng P(KCT) 2 g P(K) + g P(T)
(i) g P(K CT) = g P(K) + g P(T)
(ii)) ng P(KAET) = g P(K) . g P(T)

(iV) Ng p(K ’CEF) ¢ Ng p(K) * Ng p(r)

Proof : Since the following condition are true for the graphs K and T the proof is obvious.

(i) Ngint(K CT) E Ngint(K) € Ngint(T).

(i) Ngcl(K CT) =Ngcl(K) ¢ Ngcl(T)

(iii) Ngint(K AT) = Ngint(K) 4 Ngint(T)

(iv) Ngcl(K A&T) | Ngcl(K) A Ngcl(T)

Conclusion : Here we intoduce some new type of probabiliy measures in nano topological space and explain

EO6O0 AAOAT OAGCAO xEOE OEA AgAipi A8 )1 AECOAPE xA EIT OOI
study its properties. This can be further extended to matices and real life problems.
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COMMON FIXED POINT THEOREM IN
COMPLEX VALUED METRIC SPACEUNDER
N Z CONTRACTIVE CONDITION
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Abstract: In this paper, | prove the common fixed point theorem for a pair of mappings satisfying rational type
AT 1T OOAAOCEOA AT 1T AEOCEIT O ET £EOAT A x1 OEcoritragtivé icdnditibrA @he OAT OA £
prove results generalize and extended some of the known rests in the literature.

Keywords: Contractive Type Mapping , Complex6 AT OAA - A O O Edbntracivd BoRditibn, Gommon
Fixed Point .

AMS Classification : 54H25, 47H10

Introduction : One of the main area in the study of fixed point is metric fixed point theory, where the major
and classical result was given prove by Banach [1], known as the Banach contractigninciple, states that if
(X,d) is a compete metric space and¥p© & is acontraction mapping i.e.

Qafto | Qoo for all aho M Ohwhere| is non negative number s.t]  p&hen T has a unique fixed point.

In 2011, Azam, A & fisher, B & Khan M. [2] introduced the complex valued metric space & Verma & Pathak
[3]:,solanki et.al.[5], sintunavarat, cho., Kumam [4]: Chandok, S. [6,7,10]: Jungek, LG [l1Sessa S [8];
Wintunavarat W [13]; Fouz kard F [1P Nashin Inded Hashn [9] and many others. In this paper, we prove some
common fixed point theorems for two pair of weakly mapping satisfy a contractive condition of rational type.

In 1984, KhanM.S., Swalech M. and Sessa S. [¥xpanded the research of the metric fixed point theory to a
new a category by introducing a control function which they called an altering distancefunction.

Definition 1A [15]: A function « DY © 'Y is called an altering distance function if the following properties
are satisfied:

. e 0 M O ™

. e QB £ £ € 0 € EEQREIAGD QOi QE "Q

. s QWMEEONEBE DI

by ¢« we denote the set of the all altering distance function.

Theorem 1B [15: Let (M,d) be a complete metric space, lets T [ and let.

i) © 0 be a mapping which satisfies the following inequality

¢ QVYHBYD  heQafo

For all i 0 @& @Ed € a1Q & p8Then S has a unique fixed pointaf0 and moreover for each
of 00Qd Yo &

Lemma 1C Let (M,d) be a metric space. Letv be a sequence in M such thatd Qg « 'Q o fw I

If w is not a Cauchy sequence in M, then there exist an 1tand sequence of integers positive {m(k)} and
{n(k)} with

m(k) > n(k) > K

Such that
Qb R -h Qo -
And

() Q4 Qo -
(i) Q& Qo -
(i) Q4 Qo -
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Remark 1: Form Lemma 1C is easy to geb Q¢ Q w Fro -
Theorem 1.1 let T be a continuous self map defined on a complete metric space (X, d). Suppose that T satisfies
the following contractive condition.

QYEYH | ———— [ k! afon oo of 8 ppad where fi v mip higel 1 p.ThenT
has a unique fixed point

Also, in 1975 Dass & Guptprove that every continues self map on the metricspace (X, d) which satisfies the

QYEYH | ———— | ok | afor o8 8 ppddwhere

|~ fp hi®8 |  p.Then T has a unique fixed point

Preliminaries : Definition 2.1 [2]: let ¢ be the set of complex nunber and let z;, z,, ¥ C as follows:

@ oU'Yad Y@ Roaw  04ad 8 898

Consequently @ & if one of the following condition is satisfied

a) YQ®h YQ Aoad 04

b) YQ&  YQb ROad® 04w

c) YQ&O Y FOad 04

d YQd Y Foad 04

In particular & L & if Z; Z,and one of (a), (b),(c) is satisfies and if Z & then only (c) is satisfied that
1. FON YOEQ OF OO O OV 6

2 oma s sl ol
30 ONEQ Ot ® O

Definition 2.2 : Let X be a nonempty set, & C be the set at complex numbers suppose that the mapping d:
® % o satisfies the following conditions

() m Qaw! o HOQ aftdy TRAN ©

(i) Qaftd Qafw! choN &

(i) Qahd  Qar  Qaw! N @

Then d is called a complex valued metric on X and (X, d) is called a complex valued metric space.

Definition 2.3 : Let (X, d) be a complex valued metric space and let® be a sequence in XThen
converge to wiff

i~ as¢ © tb
E Qwho| ©m
efinition 2.4  Let (X, d) be a complex valued metric space and let®w be a sequencen X. Then @ is a
cauchy sequence iff

| Q6o | o1 as¢ O Hbwhered N 0.

Main Result:
Theorem 3.1: Let (X, d) be a complete complex valued metric space and let the mappind®ODM O & satisfies
the condition.

B A h h h h h h N S~ o~ i
BQOHOw | « @ho | o - [oe - 1 +Q0dr  "Odxd

............ 311

forall aftfv O s.t.w @' Qafd  mwhere| i A are non negative reals withh 1 ¢ ¢ pord(Fx,
Gy)=01f Qafwo 1 Then F & G have a unique common fixed points.

Proof: Let @ be on a arbitrary point in X and define w @
W "W 0V Q mphiw8 8 . Then
« Qo hwo * Q@ F@o
@ B Qo A Q o A Qo [ Qw [
e e Q o M

Qm @ Qo [

9 o T 1 Q@ hw @ Mo
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BQ®w o ) ] ) )
| o @D Fh) T . h h - h r . h - h
1 Qe o o

|« @ ho I e Qo ho e @  ho e

T 7 e Qe ho (N N B 0 ¢ A
BQ® o — Q0
So that

i~ - [ e

| 'Qw hoo | S .Qw hoo |
As by triangle inequality
| Qo | Qo | | Q0 |
similarly:
SR OIA NI - Q@ A
| o @D vﬁb Tt h h - h h
e S 1. e e @

e D P . h h - h h - h - h
1« Qo o w ho
SO/ T ) I 1 1+ Qo o Tor e Qo o
BQw o «e Qn fw
As by triangle inequality
| Q6 | Qo o | | ,ee W
sothat| .’Q(b Ko | Cdooe o where s=—— p
| 0o R | idoeR | E i | ook | ™
forany m>n
As by triangle inequality

e i E i | Qom |
Hence B.| Qo o | . | 'Q(bﬁ"Y(b| asm,n% H

Suppose it is not so which means that there is a constant 1t such that for each positive integer j, there are
positive integers m(j) and n(j) with m(j) > n(j) > j such that

0 Q&6 Qo o -

0 Qe Qw Fro -

Forom @ ®EQ o "Yb 0 0Q0dD0E & 01 QQOHO QE &
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This implies that @ is a cauchy sequence in X. Since X is complete, there exists some' @ such thati © 0
as¢ O H,
suppose on the contrary thatd  "Oyso that’Q OHOU & T

NowB ‘QUROD « & « Qufw « Qo Rovu

« QU « Q0®m Hovu

"Ql‘)F[‘A) |'Q)F[‘A) T' h h - h h r- ] - R
1 eQ@ M "Otw

.« QOft . QR fo_h - e 1 Q6
"ot
so that

| _'Qoﬁ"oo| .d')|

e T I B L I I B .

.

|| P e
M. | | Qe m| | Qo |

which on mapping € © Hb
Therefore B TR
‘Q 0hOU T
which is contradiction sothat 0 "OU0
similarly we show that b "OU

Thus implies that U is fixed point

Uniqueness: Let 0 "Q& be another common fixed point of "0Q "0 Then
« QURY ¢ Q "OB0U
| e QD

5 ] eQ00L Oy 5
|« WA 1« @AOOD 7 . QO0D QUK

‘Q UAOVQ LAOL QU ROV 'Q v ROL : ‘Q VAOLQ v ROV
Q uh) Q vh)

« QUM | 4 « Qo
L'QUFI’) R o N1
Where” | psol U, which proves the uniqueness of common fixed point.
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FRACTIONAL KINETIC EQUATIONS
INVOLVING STRUVE FUNCTION
USING SUMUDU TRANSFORM

Kottakkaran Sooppy Nisar

Department of Mathematics/College of Arts & Science/Wadi Aldawaser
Prince Sattam Bin Abdulaziz University/Alkharj/ Kingdom of Saudi Arabia

Abstract: The importance of fractional differential equations in the field of applied science gained more
attention not only in mathematics but also in physics and engineering applications. The effectiveness and the
importance of the kinetic equation in certain astrophysical problems we develop a generalized form of the
fractional kinetic equation involving Struve functions. The obtained results are useful to investigate many
problems in Mathematical physics.

Keywords : Fractional Calculus, Kinetic Equations, Mittag-Leffler Function, Sumudu Transform.

Introduction:  The Struve function [1]

o 2p+v 4

. (0% 8
H@=8 555 )

" Ggn - 5w+ ¢

¢ 2=+ ¢ 2
is a particular solution of the non-homogeneous Bessel differential equation
45X 26+v~&
0

xyi(W+xy(hi{ % 9) f x =5 (2)

Py +
¢ 2

where G is the classical gamma function. The function z'* 1HV(Z) is entire functions of zand V. Recently,
Watugala [2,3] introduced Sumudu integral transform is defined as follows (see [46]):

G(u)=ng(1);ug=ﬁetl(u) dt ®3)
for ul ( -1, {) where,
éMe " t¢ 0
f(t)[<i ’ :
| ( )| :, Met/tz,tz 0
and M,f,, fare some positive real constants.
The generalized Mittag-Leffler function E, ,(x) is defined by (see [7]):

5 X"
E X) = - -
ol ¥ Q‘OG(an +4
Recent studies observed that the solutions of fractional order differential equations could model realife
situations better, particularly in reaction -diffusion type problems. Due to the potential applicability to wide
variety of problems, fractional calculus is developed to large area of Mathematics physics and other
engineering applications [8]-[15]. In view of the effectiveness and a great importance of the kinetic equation in
certain astrophysical problems, the author develop a further generalized fom of the fractional kinetic equation
involving Struve function using Sumudu transform method.
Solutions of Generalized Fractional Kinetic Equation for Struve Function: In this section, we will
investigate the solution of the generalized fractional kinetic equations by considering Struve function. The
results are as follows.

4)
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. 3
Theorem 1: If d >0,v>0,mtl C and m> - E then the solution of fractional kinetic equation

N(t)=N,H,(d't) -d' DN} ®)
is given by
= (-1 véz2n m+ 1) +1
N(t):a:)( ; %3%6 5 ])3 u
G — 5@ —
@ o¥lEm 5t 6)
1adt B .
3{?7 9 E (2n+m_ﬂ)('dt)

Proof: The Sumudu transform of RiemannLiouville fractional integral operator is given by

SR f():d=udy ™
where G(u) is defined in (3).
Now, applying the Sumudu transform to both sides of (5) and applying (1) and using

s{, 0" (9 s‘“ i () =ug)
We have,
N"(u) = SetN(§; u ge =g H( a9

- d'Sg, D* N(') ua

— N e~ iy .
e e Gg@
é ¢
- d'u'N (u)
where
S{ 1-/1} =u'? (Gn‘)

Then we get,

Q o
S0 3 ( (8)
2 .

N2 (-1)" @e2n 1) +1 gt'de’s "
0n=0 gG]i,ﬂ_ 3+(§E62 -
¢

- a_ 3
G +-
2 5
Therefore

N*(u)=Noa( 1)" Guvg2n mr 1) +1

- 3 6.4 3
n=0 Ga + G] ~
g 0@ (9)

3 \Iie.uv(2n+m-l.)'a::. '(du)r
r=0

<o
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v-1
Taking inverse s Sumudu transform of (9) and using S'l{ u; § = (; , AV 8

we have
) -1)" Gvéan mr 1) +1
s (g = ng e Y
" Go © agm D+
¢ 2+ ¢ 2
PsHa () (¢ u g
|l r=0 y
Which gives
a _1" 2 1 v 2p+mt
n(y=ng ) @ D Hadde B
¢ 2+ ¢ 2 =
é'u' r vr tv ﬂ
33 _1 d 1.
%,a_‘o( ) () G(v(2n+m # 1)-)5

In view of definition of Mittag -Leffler function given in (4), we obtained the required result.
Theor em 2:

fa>0,d v 6mt Ji,a,d and m> —gk then the solution of fractional kinetic equation

N(t)=N,H,(d't) -a'0"N(1) (10)
is given by

o 2 (11)

Proof: The proof of Theorems 2 would run parallel to those of Theorem 1.

Graphical Representations: In this section we plot the graphs of main results established in (6). Graphs of
the solution of Eq. (6) are depicted below for some parameter values, that isN, =/ =l T and different
values ofv.

For Fig. 1, 2 and 3, we choose=0.1,0.2,0.3,0.4;0.5,0.7,0.9,1,1and 1.6,1.7,1.8,1. respectively

Fig 1: Solution of fractional kinetic equation (6) for
v=0.1,0.2,0.3,0.

035 |
\‘,‘\ i) 1
.30 = - v=0).2 H
\\'\ - v=03
Yy
425 — =04 H
1
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]
15 5
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e e =TT
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Fig 2: Solution of fractional kinetic equation (6) for

v=0.5,0.7,0.9,1,1.
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Fig 3: Solution of fractional kinetic equation (6) for
v=1.6,1.7,1.8,1.
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Conclusion: In this paper, we have established solution of fractional kinetic equation involving Struve
function with the help of Sumudu transform. It is not difficult to obtain several further analogous fractional
kinetic equations and their solutions as those exhibted here by Theorem 1 and 2.
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SOME RESULTS IN BITOPOLOGICAL SPACES
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Abstract: In this paper, we are going to introduce some properties of T ¥ 1 semi open sets / closed sets in
bitopological spaces. In addition, we investigate several results int t+ | semi open sets / closed sets and
Tt 1 semi continuous functions in bitopological spaces. Moreover, we show several results int + 1
semi open sets / closed sets in bitopological spaces. Bitopological space does not exist for every metric space.
But it exists only for special type of metric spaces, known as "asymmetric metric spaces". There are many
applications in different parts in m athematics.

Keywords : Semi Open Sets, Semi Closed Sets, Semi Continuous.

Introduction:  J.C.Kelly started the study about bitopological spaces in 1963. He introduced the concept
OAEOI P11 1 CEAAI ODPAAA68 "AOEAAOh EA EIT OO1I AGAAA OAOET O«
generalizations of some specific results. Kelly initiated hisstudy about bitopological space from quesimetric
and its conjugate. A quasipseudometric | A on a set® on the Cartesian product & @ satisfies the
following properties: now mH oy Oh o oo [ o hl chufay & and 1) e miff
© oA ohoy @, then 1 h is a quasimetric. However, the symmetric property does not hold for quask
metric. Furthermore, every metric space is a quasmetric space. But the converse need not be true.
Bitopological spaces arise in a natural wayby considering the topologies induced by sets of the form
6 wbhay | andd oDy ofto | ; wheren and ) are quasi metrics oné and 1] Gt
n «fw. For a nonempty set @&, we define two topologies t and T on @8Then, &ht At is called a
bitopological space.A topological space occurs for every metric space. But bitopological spaces occur for quasi
metric spaces or asymmetric metric spaces. Quadiniform spaces, which are generalizations of quasimetric
spaces, &0 induce bitopological spaces. This structure is a richer structure than that of a topological space.
Some authors extended the suitable generalizations of standard topological properties into bitopological
category. Most of the results are related withthe theory, but some with applications. Any subset 0 of a
bitopological space oht it is called open, if6E@T OE T DAT tATIAD BThroughout this paper,
T QEdht o®d A |1 QHoandt | @& be the interior, closure,| interior and | closure of &
with respect to the topology T respectively,”Q plt. Lett | "Q®odandt | @ are the] interior and
1 closure of & with respect to the topology T N'Q pi hgi 8Semi open sets in bitopological spaces introduced
by Maheswari and Prasad in 1977. Further properties were studied by Bose in 1981. Banerjee initiated the notion
1 open sets in bitopological spaces in 1987. Khedr introduced and studied aboutr + | open sets. Later,
Fukutake defined one kind of semi open sets and studied their properties in 1989. Any subseb of a
bitopological space oht it is called t  regular open, if & T Q& @d 8 Any subsetd of a
bitopological space @it fit iscalled T+ semiopen,if 6Pt @& "Q&¢d 8In a bitopological space
it it , 6 issaidtobet | open,if for oM dhthere existst  regular open set"Osuch that N "00 68
Complement of T 1 open setis calledt 1 closed set. Collection of allt | opensetsandt 1 open
sets are denoted byt & ' respectively. Awayst Ot and t Ot 8Recently, Edward Samuel and
Balan establishedt ¥ 1 semi open sets in bitopological spaces. Any subseb of a bitopological space
Oht At iscalledt + 1 semiopen,if 'YP& Pt @dY ,forsomet | open set™¥8Similarly, Any subset
o of a bitopological space oht it is calledt t | semiclosed, if Op 6 pt Q&'® , for some T
closed set'®

A function "OD oht it ©  @h, h, is said to be pairwise continuous if and only if the induced functions
oD ot © @h, and™QD Gt © @h, are continuous.

Consider the two bitopological spaces @it it and &h, h, . Then, a function™QD &t it © @h, h, s
called T+ 1 semicontinuous,if Q @ ist1 1 semiopensetind®, forevery, 1 opensetwin Q.
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Methodology : 7 A EAOA ET OOT AGAAA OiT i A AAAI EOCEITO 1T £ OAOET 00
semi closed sets, continuity and semi continuity in bitopological spaces. In addition, we have discussed some
properties of Tt 1 semi open/closed sets inbitopological spaces. We have proved the following : In a
bitopological space @ht it hd is T+ | semiopeniff®, 6 is T+ 1 semiclosed.

Further, we have explained the properties oft + 1 semi continuous functions in @t it . We have
introduced the following results: Let "QD @ht it © ¢@h, h, . Then, "Qis T T XX semi continuous iff
"Q TYis Tt X semiclosed in®,! , closed set’Yin

Let"OD oft it © ¢h, A, bet T X semi continuous. Then,} , Mopen setwin & Mt 1+ X semi open
set 0 in & such that "Q0 P . Moreover, A constant function "QD &t it © &h, h, isat t X semi
continuous function. Besides, we have introduced the homeomorphism in bitopological spacesWith that, the
following result is also proved: Let 'QD @®ht it © ¢@h, h, be bijective and homeomorphism. Then, Qs
closed and continuous.

Results and findings: First we will show the following result : Let 0 be a subset of a bitopological space
oht At . Then,8istt 1 semiopeniff & 6 isTt 1 semiclosedin Ght it 8To prove this result, let &
be t + | semi open. Then, there exists al | openset Y such that 'YP & P+ &Y. This implies,
T QY PO PY8et QEdP®OP®;where”Y wisat 1 closedset. Thus® 6 ist 1t
semi closed. Conversely, let 6 is t1 1 semi closed. Then,¥ Q& ®P & 6P "Q for somet
closed set’O This implies,t @30 p 6 p 'Oand "Oist | openset. Thusdis T+ 1 semiopen.

Every T 1 opensetistt 1 semiopenin @it it 8And everytt 1 semiopen setist T semiopen
in ¢ht ht  8Similary, we can prove the same results for closed sets also. However, the converse of the above
statements need not be true.

If and 6 are Tt | semi open sets in a bitopological space ®ht it hthen 6° & isalsot t 1 semi
open set. Butd, ¢ may notbeat t 1 semiopen set. Furthermore, ifd and 6 are subsets of a bitopological
space oht it and®* 6isatt | semiopen set, then 615 need notbet t | semi open sets. If & and
6 arett 1 semiclosed sets in a bitopological spacednt it hthen 6. 6 isalsot t 1 semi closed. But
0° 6 may not be at t 1 semi closed set. Furthermore, ifdo and 6 are subsets of a bitopological space
oht it andd. disatt | semiclosed set, then 5f need notbe t T+ | semi closed sets. Similarly,
Countable unionof Tt 1 semiopensetist ¥ 1 semiopen. And Countable intersection oft ¥ | semi
closed setist 1 semi closed.

Any subset 6 is Tt 1 semi open set in a bitopological space &t it if and only if 6 P+ Gt

1 Q& 0. Similarly, Any subset 'Ois tt 1 semi closed set in a bitopological spaceht it if and only if
6pt "ED 1 OB 8We can prove the results for T t as we did for T T . Now, we introduce a result
for a product of two sets. Letdh) be the subsets of bitopological spaces®fit hit ) and (&h, h, ) respectively. If
ON 1t 1 semiopenin®andd N , , | semiopensetin® then,6 o6~ 1t , t , 1 semi
opensetin(@ it , T ). Similarly, we can show that the previous result holds for closed set too.

Now we are going to discus the properties of T T | semi continuous functions in bitopological spaces. Let
(ot [t ) and (G, A, ) be two bitopological spaces. Then, a function'QD &t it ©  ¢h, h, is called
t t continuous, if the inverse image of each, Mopen set in & is T T Xopen set in &. A function "QD

oht it © @h h, iscalledt t 1 continuous, if the inverse image of each, Mopen setin®is T 1 XX
open set in &. A function "QD @ht At © ¢, h, iscalledt T X semicontinuous, if "Q @ is T 1X
semi open set in ¢, for every , | open set in & Further, If 'OD At At © @A, K, and "QD

@h, h, © @h-h- betwot t X semicontinuous functions, then "&"Qx &ht it Y @h-h  need
notbe a T T X semi continuous.

Now, we introduce the following result : Let "QD &ft it ©  @h, h, .Then,"QGis T T X semi continuous if
andonly if "Q "V)ist t X semi closed in®, for each, closed set"Yin &

Let'OD oft it © ¢h h,  bettX semiAi T OE T8, ® O Hopenset® in M T 1 X semiopen
set 0 in Gsuchthat Q0 P .
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Furthermore, A constant function "QD &Rt it ©  &h, h, is T T X semi continuous. Because, Consider a
. opensetwin ¢Bf w" & then 'Q @) @ist T X semiopen.If we @ then 'Q %ois T 1 XK
semi open. Since®bo are T T X semiopen sets in®, "Qis T T X semi continuous.

Finally, we are going to define the homeomorphism in bitopological spaces. LetQD &ft it ©  ¢h, h, .
Then, "Q is homeomorphism iff the maps "QD it © @h and QD @it © @h, are
homeomorphism. To prove this result, suppose that "Gs homeomorphism. Then, "Qs continuous and bijective.
Further, 'Q ¢, &h, h, © &ff At exists and continuous. Since "Qis continuous, "Q and "Q both are
continuous. Clearly, "Q and "Q are bijective. Since,"Q is continuous, both "Q AT A are continuous.
Similarly, we can prove that the converse part of this result is also true.

Let 'OD oit At © @h, h,  be bijective and homeomorphism. Then, Qis continuous and closed.

Since "Qis homeomorphism, "QAT X both are continuous. Let "Y be an open set in &t At 8Then,
Q Y "Q"Y is open set in space &h, h, 8Thus, "Qis open map. Let'Q a closed set in space Ot it 8
This implies, & "Ois open in it it 8 So, "Q®, "0 is open in @A, A, . But 'Q®, 0 "Q® , QO
®, "Q'08This implies, ® "Q'O is open in &h, h, . Therefore, "Q'O is closed in space ¢h, h, .i.e. Qis
closed.

Conclusions: In this paper, Some results off T 1 semi open sets / closed sets and t | semi continuous
functions in bitopological spaces have been discussed. Furthermore, we have introduced the homeomorphism
of bitopological spaces. In addition, we have investigated the relationship between open sets (closed sets) and
homeomorphism in bitopological spaces. We plan to extend our research work to uniform continuous,
t T connectedness andt t+ | compactness. Further, we are interested to find some intereshg results in
bitopological spaces.
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Alphonsa Mathew

Department of Mathematics/St. Thomas College/Thrisur/Kerala680001/India

Anil George K

Department of Computer Science/St. Thoma&ollege/Thrisur/Kerala-680001/India

Abstract: Exact solution of an unsteady magnetehydrodynamic (MHD) convective flow problem of an
incompressible, electrically conducting and viscoelastic (second order) fluid through a porous medium
bounded by two infinite vertical porous plates is obtained analytically. The fluid is injected with constant

velocity through the channel wall at & — and simultaneously removed with same velocity through the

other wall at & -. The temperature of the plate at ¢¥ — is assumed to be fluctuating spanwise

cosinusoidally as“Y & hXRy Y Y Y AT & **.A magnetic field of uniform strength is applied
perpendicular to the planes of the channel plates.The magnetic Reynolds number is assumed very small so
that the induced magnetic field is neglected. The temperature difference between the plates is high enough to
induce the heat due to radiation. The Rosseland approximation is used to describe the radiatiomeat flux for
the fluid as optically-thick gray gas, absorbing/emitting but non-scattering medium. Exact solution of the
partial differential equations governing the flow under the prescribed boundary conditions has been obtained
for the velocity and the temperature fields. The velocity, temperature and the skin-friction and Nusselt number
in terms of their amplitudes and phase angles have been shown graphically to observe the effects of viscoelastic
DAOAT AGAO 1 h ET EAAQElrashgf OubBeOE | Hartmank Guinbeh 1@, A permeability of the
porous medium K, Prandtl number 0, radiation parameter N, pressure gradient A and the frequency of
oscillation 7 . The final results are then discussed in detail in the last section of the paper with te help of
figures.

Keywords: Magnetohydromagnetic (MHD), Convective, SpanWise Fluctuating, Viscoelastic, Porous Medium,
Radiation.

Introduction: Many common liquids such as oils, certain paints, polymer solution, some organic liquids and
many new material of industrial importance exhibit both viscous and elastic properties. Therefore, these fluids
called viscoelastic fluids are being studied extenisely. Many researchers have shown their interest in the
fluctuating flow of a viscous incompressible fluid past an infinite or semi-infinite flat plate. Viscoelastic fluid
flow through porous media has attracted the attention of scientists and engineers lecause of its importance
notably in the flow of oil through porous rocks, the extraction of energy from geothermal region and drug
permeation through human skin. The knowledge of flow through porous media is useful in the recovery of
crude oil efficiently from the pores of reservoir rocks by displacement with immiscible water. The flow through
porous media occurs in the ground water hydrology, irrigation, and drainage problems and also in absorption
and filtration processes in chemical engineering. The scigtific treatment of the problem of irrigation, soil
erosion and tile drainage are the present developments of porous media. Nakayama and Koyama [1] studied
buoyancy induced flow of a nonNewtonian fluid over a non-isothermal body of arbitrary shape in a fuid
saturated porous medium. Ariel [2] analyzed the flow of viscoelastic fluid past a porous plate. MHD flow of a
viscoelastic fluid past a stretching surface was studied by Andersson [3]. Pillai et al. [4] analyzed viscoelastic
boundary layer flow through porous medium with heat transfer. Sharma and Pareek [5],[6] examined an
Unsteady flow and heat transfer through an elasticeviscous liquid along an infinite hot vertical porous moving
plate in different situation. Rahman and Sarkar [7] investigatal the unsteady MHD flow of a viscoelastic
Oldroyd fluid under time varying body forces through a rectangular channel. Singh and Singh [8] studied an
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MHD flow of a dusty viscoelastic (Oldroyd B-liquid) through a porous medium between two parallel plates
inclined to horizon. Datti et al [9] studied MHD viscoelastic fluid flow over anon -isothermal stretching sheet.
Roy and Chaudhury [10] analyzed heat transfer by laminar flow of an elasticwiscous liquid along a plane wall
with periodic suction. Hameed and Nadeem [11] studied unsteady MHD flow of a nofNewtonian fluid on a
porous plate.

Hayat et al [12] discussed periodic unsteady flows of a neNewtonian fluid. Kumar and Sivaraj [13] studied
MHD mixed convective viscoelastic fluid flow in a permeable verical channel with Dufour, effect and chemical
reaction. Singh [14] analyzed viscoelastic mixed convection MHD oscillatory flow through a porous medium
filled in a vertical channel. Singh  [15] analyzed an oscillatory mixed convection flow of a viscoeltis
electrically conducting fluid in an infinite vertical channel filled with porous medium. Considering the Hall
effects Attia [16] discussed unsteady Hartmann flow of a viscoelastic fluid. Attia [17] analyzed Unsteady MHD
Couette flow of a viscoelastic fuid with heat transfer.Alphonsa and Singh [18] discussed Hall effect on
radiating span-wise fluctuating MHD convective flow through porous medium. Damseh and Shannak [19]
Visco-elastic fluid flow past an infinite vertical porous plate in the presence d first order chemical reaction.
Sivaraj and Rushi Kumar [20] studied MHD mixed convective flow of viscoelastic and viscous fluids in a
vertical porous channel. Misra et al [21] studied Hydromagnetic flow and heat transfer of a secondgrade
viscoelasticfluid in a channel with oscillatory stretching walls: application to the dynamics of blood flow also
Choudhury and Das [22] analyzed visceelastic MHD free convective flow through porous media in presence
of radiation and chemical reaction with heat and mass transfer. Recently Gorla et al [23] analyzed the effect of
unsteady heat and mass transfer in MHD viscoelastic fluid flow through porous medium between two inclined
porous parallel plates with soret effect and GJitter force.

The objective of the prAR OAT O DAPAO EO O OOOAU AT O1 OO0AAAU - ($ AII1
liquid -B) fluid through a porous medium filled in a vertical channel in the presence of heat source. Constant

injection and suction is applied at the left and the right inf inite porous plates respectively. A uniform magnetic

field is applied along the axis perpendicular to the planes of the plates. The magnetic Reynolds number is

assumed very small so that the induced magnetic field is neglected. The temperature differenceetween the

plates of the channel is sufficiently high to induce heat radiation. An exact solution of the partial differential

equations governing the flow problem is obtained and the effects of various flow parameters on the velocity

field and the skin friction are discussed in the last section of the paper with the help of figuresThe object of

OEA POAOGAT O PAPAO EO O OOOAU AT O1 OOAAAU - (Bpfluidi T OAAC
through a porous medium filled in a vertical channel in the presence of heat source. Constant injection and

suction is applied at the left and the right infinite porous plates respectively. A uniform magnetic field is

applied along the axis perpendicular to the planes of the platesThe magnetic Reynolds number § assumed

very small so that the induced magnetic field is neglected.The temperature difference between the plates of

the channel is sufficiently high to induce heat radiation. An exact solution of the partial differential equations

governing the flow problem is obtained and the effects of various flow parameters on the velocity field and the

skin friction are discussed in the last section of the paper with the help of figures.

Mathematical Analysis: An oscillatory MHD convective flow of a Walters liquid Model 6aqviscoelastic),
incompressible and electrically conducting fluid through a porous medium in a vertical channel is considered.
The constitutive equations for the rheological equation of state for the viscoelastic fluid (Walters liquid Model

Oceare

oo M

n ¢ T 0 0 Q 0. (2)

Where inf 0 ¢ | — ‘7 ,and{ t is distribution function of relaxation time 18In the above

equation ] is the stress tensor,n is an arbitrary isotropic pressure, "Q is the metric tensor of a fixed co

ordinate systemaiand ‘Q s is the rate of strain tensor. It was shown by Walter (1964) that equation (2) can
be put in the following generalized form which is valid for all types of motion and stress

N oo ¢ 10 & ——0Q Wy Q. 3)
Wherein &5 is the position at times ¢ of the element which is instantaneously at the point & at the time t. The
£l OEA xEOE OEA ANOGAOEIT jVYq O jé¢q EAO AAAT AAOECT AOA

memories i.e. short relaxation times, the above equation can be written in the following simplified form:
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e -2 (—,

(4)

where — 0 1 Qtis limiting viscosity at the small rates of shear, Q@ _ t (0t Qtand — denotes the
convected time derivative.

The insulated plates of the channel are at distanceCeapart. The porous walls of the vertical channel are lying
in the & - planes and the fluid is injected through the left porous plate with constant velocity (V) and
simultaneously sucked through the other plate with the same velocity (V). The s - axis is oriented vertically
upwards along the centreline of the channel. Theds -axis taken perpendicular to the planes of the plates and a
transverse magnetic field of uniform strength & 1 hrt is applied along this axis. The nonuniform
temperature of the plate at & - is assumed to be varying spafwise cosinusoidally in ace and time both
as’yY hfhy Y Y YAT & o+t (5)

Since the plates of the channel are of infinite extent in the & direction, therefore, all the physical quantities
except the pressure are independent ofs . All fluid properties are assumed constant except variation of density
with temperature only in the body force term. The equation of continuity ngB Tt for the constant
injection/sucti on at the channel plates integrates to0z @ where @ & *ft represents the velocity
components in the directions oSSR respectively. The physical configuration of the problem is shown in
Figs. 1a & 1b.

&

z _ Q Z _ Q

w= 3 W =+3

x*
= —> 7*
Fig.1a. Hot Vertical Channel Fig.1b. Span-Wise Cosinusoidal Plate
Temperature

&I TTTxETC 1| OOEA AT A %xEO yane AT A +0i A0 AT A #EATA ya

approximation the magnetohydrodynamic (MHD) mixed convection flow in the vertic al channel is governed
by the following momentum and energy differential equations:

- 0— -— ] o T —06 =0 oY Y, (6)
DZ "Y "Y, (7)

z z z

® Y

@

z z

wheren — —,

The heat flux due to radiation and for an optically thick gray gas is expressed byusing Rosseland
approximation as

n’ T (8
We assume that the temperature differences within the flow are sufficiently small such that”Yz may be
expanding in Taylor series about’Y. Neglecting higher order terms and retaining first term only, we obtain
Y etY'Y Q. 9)
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Substituting (9) into (8) and simplifying, we obtain
z P (20)

The substitution of equation (10) into the energy equation (7) for the heat due to radiation, we get

A o— @Y —— 0°Y Y, (11)
The boundary conditions for the problem are

& -4 6 mhY Y, (12)
& ¢ o mhY Y Y YA & -, (13)

Introducing the following non -d

imensional quantities
o o z h z h z z z z

ahufd ho 1 °o'h 6 —h— hn h (14)
into equations (6) and (11)we get

1 - _— _— o6 v — 0 U 6 O (15)
10k _0+ n— —— Y- (16
where | —is the viscoelastic parameter, _ —is the injection/suction parameter,

‘Oi —— isthe Grashof number,0 6 Q — isthe Hartmann number,

0 —is the permeability of the porous medium, 0 i — is the Prandtl number,

0 — is the radiation parameter, Y is the heat source.

The boundary conditions in the dimensionless form become

©w -do mh— mh (17)
w -dp tTh— AT ‘Oa o. (18)

Solution of the Problem: In order to obtain the solution of this flow in the porous channel when the fluid is
acted upon by an unsteady periodic drop in pressure, we assume theolution in complex variable notations as
6 6 wQ h—afid — ®©Q h — 6Q h (19)
where 0 is a constant. The real part of the solution will have physicésignificance.

The boundary conditions (17) and (18) can also be written in complex notations as

® -dp mh— mh (20)
®w -dp mh— Q . (21)
Substituting equation (19) into equations (15) and (16) we obtain following equations

p QB o6 “ 0 v Qp “T 6 _0 Ok, (22)
p —— _0+ Y QO _ T (23)

where the primes in these ordinary differential equations denote differentiation with respect to y.

The boundary conditions (20) and (21) reduce to

w g6 mh — Tmh (24)
®w 46 Tt — p. (25)
The solution of equation (22) for the velocity field under the boundary conditions (24) and (25) is obtained as

o__ - - )

] P - - 1

. L] L — — L1
uahod s o— — QT QT agQ (26)

lI R n

v Tl o - e i

u v T %28 g
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wheread “ 0 0 Up - 6 p Ot _1 a6 p Ot _i

a 4 —, g —,

Similarly, the solution of equation (23) for the temperature field under the boundary conditions (24) and (25) is
obtained as

The amplitudeis®s & & andthe phase angles OAT—, (28)
wherein
o - - T = . —
1 I— - N - - Q ]
[N ]
0 0 W0 . — —— 4 QA (29)
1+ . ~|’|
noo T . e e
u b aQ £'Q Q U

Similarity, we can get the Nusselt number,0 @ the heat transfer coefficient in terms of its amplitude sGsand
the phase anglg from equation (27) for the temperature field as

0o $ATOq o 1 , (30)
With §&¢ 0 WO — (31)
where the amplitude SCsand the phase anglg of the rate of heat transfer are given as

s 'O Oh r OAT—. (32)

Results and Discussion: An exact solution of an unsteady MHD convective flow of Walters liquid Model BNj
(viscoelastic) through porous medium in a vertical porous channel is obtainedin the presence of a heat source.
The plate temperature of the channel varies spanwise cosinusoidally. The two porous plates are subjected to
constant injection and suction. It is also assumed that the conducting fluid is optically-thick gray gas,
absorbing/ emitting radiation and non -scattering. The slution so obtained is evaluated numerically for
different sets of values of the parameters involved in the flow field. In order to have a better insight of the
influence of the parameters on the velocity and temperature fields these numerical values arehen illustrated
through figures. The influence of each of the parameters on the physical quantities like the velocity, the
temperature, the amplitude and the phase of the skinfriction and rate of heat transfer are depicted through
figures.

The effects d different parameters on the velocity field 6 «fofd are shown in Figure 2 Different curves in this
figure represent the sets of various values of the parameters listed in Table 1. This figure clearly shows that the
velocity is maximum in the middle of the channel which leads to parabolic velocity profiles in the channel as
expected. curve | corresponds to the case of Newtonian fluid. Remaining curves are compared with the curve
Il to assess the influence of each parameter on the velocity. This figre clearly shows that curves 1V, V, VI
and Xl lie above the curve Il which means that the velocity increases with the increase of injection/suction
parameter _hGrashof number "Oi, permeability of the porous medium K and favorable pressure gradientd
respectively. There is a sharp rise in the velocity with the increase of the injection/suction parameter_ . The
increase of velocity with the increase of the Grashof numberOi physically means that the enhancement of the
buoyancy force leads to incease of the velocity 6 «ford 8 The increase of velocity with the increase of
permeability of the porous medium indicates that the resistance posed by the porous medium reduces as the
permeability of the medium increases because of which the velocityncreases.As expected the larger favorable
pressure gradient in the channel leads to faster flow, hence, velocity increases.
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Tablel. Sets of Parameter Values Plotted
in Fig. 2

1 A GrM K Pr N S A Curves
0O 051 2 0207 105211
02 051 2 0207 105211
05 051 2 0207 10521 1
02 081 2 07 10521 IV
02 052 2 0207 1052 1V
02 051 4 02 07 1 05 2 1 VI
02 051 2 10 07 1 05 2 1 VI
02 051 2 02 7.0 1 05 2vm
02 051 2 02 07 5052 1 IX
02 051 2 0207 15021 X
02 051 2 02 07 1 05 31 Xl
02 051 2 02 07 1 05 251

The effects of other parameters like viscoelastic parametef h Hartmann number 0 hPrandtl number 0,
radiation parameter () hheat source"Yand frequency of oscillations] are represented by curves IlI, VI, VIII, 1X,
X and XII respectively. From this figure it can be easily observed that these curves lie below the curve Il. This
means that the flow velocity decreases with the increase of these parameters. The flow retards due to increases
viscoelasticity of the fluid. Lorentz force which is introduced due to the application of the transverse magnetic
field retards the velocity. This force gives a dragging effect on the flow. The two values of the Prandtl number
0 =0.7 and0 =7 are chosen to represent most common fluids aimnd water respectively. It is evident that the
velocity is less in water than in air. Since the Prandtl number gives the relative importance of viscous
dissipation to the thermal dissipation so for larger Prandtl number viscous dissipation is predominant and due
to this velocity decreases. The increase of radiation N, heat source S and the frequencylead to a decrease in
velocity.

The variation of the amplitude ¥sAT A OEA DEAOA AKEQGEAOE| T AAQEBIFGE&EH4 AOA O
respectively with the increase of different parameters like the viscoelastic parameter/ hinjection/suction

parameter _, Grashof number "Oi, Hartmann number 0 , permeability of the porous medium 0 h Prandtl

number 0, radiation parameter (), heat source parameter"Yand the pressure gradient is presented. It is

obvious from figure 3 that for any set of parameters listed in Table 2 the amplitude goes on decreasing with
increasing frequency of oscillations . The decrease is sharp irggsfor small oscillations but thei OAAOAAOG AO
increases further. Comparing curves lll, IV, VI and X with the curve | reveals that the skinfriction amplitude

increases with the increase of injection/suction parameter_, Grashof number "Oifpermeability of the porous

medium 0 and the pressure gradientd. It is true physically also because the increase in these parameters

results into velocity increase which consequently leads to the enhancement of shear stress. However, the
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increase in viscoelastic parametert , Hartmann number 0 hPrandtl number 0 , the radiation parameter G and
heat source"Yrepresented by curves Il, V, VII, VIl and 1X when compared with curve | attribute towards the
decrease in the amplitude of the skinfriction.

04 T T T T T

v LGrM K PrNS A

03 02051 2 02071052 |
12 2

12 2

14 2

12 2

025 ' 5 5
12 2

s 02 12 2
12 3

015
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Fig. 3. Amplitude Of Skin Friction
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Fig.4. Phase of Skin Friction

The behavior of the phase angle3 of the skin-friction t is shown in Figure 4 for different values of various sets
of flow parameters. From this figure it is evident that there is always a phase lead because its values computed
numerically remain positive throughout for any set of values of the flow parameters There is almost an
exponential increase of « with increasing frequency 1 for all sets of values considered. We notice by
comparing curves I, Ill, 1V, VI, VIl and VIII with curve | that the phase angle increases with increasing
viscoelastic parameter[ , injection/suction parameter _h Grashof number "Oi, permeability of the porous
medium 0, Prandtl number 0 and radiation parameter () . However, the phase lead decreases with the increase
of Hartmann number 0 , heat source"Yand pressure gradiento as is indicated by the comparison of curves V,
IX and X with curve I.

The variation of the temperature with the injection/suction parameter _f Prandtl number 0, radiation
parameter 0, heat source"Yand the frequency of oscillations] are shown in Fig.5. It is observed from this
figure that the temperature decreases with the increase of either of these parameters.
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The amplitude $Csand the phase angle of the rate of heat transfer against the frequency of oscillations are

illustrated in Fig. 6 and Fig.7 respectively. It is evident from Fig. 6 that the amplitude SCs decreases with the

increase of injection/suction parameter _hPrandtl number 0, the radiation parameter ) and heat source"Y

The amplitude in the case of water 0 Ka @ AAAOAAOAO OAPEAI U xEOE ET AOAAOGET C
OA1l OAO ~EOANOAT AU T &£ 1T OAEI T AGET 1 O | 8asekléaq @ith th®ildeas® of OE A O
ET EAACEI 1T TOOAOEIT DAOAI AOGAO Ah OEA OAAEAOQEI 1T DAOAI AOGA
1 ETAAOI U AO j CI A0 11 ETAOAAOGEI C8 )OO EO Al O TI®EAA A
the phase starts oscillating between the phase lead and the phase lag as the frequencyincreases. Fig.8 gives a

Al AAO AOGO PEAOOOA 1 £ GidOErEe 490 bepirk tO Astilat® Be@vden thé& ghdse I€ad and

the phase lag as the frequency increases.
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Fig. 6. Amplitude of Nusselt Number
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Fig. 7. Phase Angle of Nusselt Number

Conclusions: The following conclusions are made from the above discussion:

il
il

=A =4

=A =4 =4

=A =4 =4

The increase of buoyancy force leads to increase of the velocity cfofp 8

The increase of velocity with the increase of permeability of the porous medium indicates that the
resistance posed by the porous medium reduces as the permeability of the ntdum increases because of
which the velocity increases.

The velocity also increases with the increase of injection/suction parameter_ and favorable pressure
gradient 0.

The flow retards as the fluid viscoelasticity increases.

Lorentz force which is introduced due to the application of the transverse magnetic field retards the
velocity.

The increase of Prandtl number, radiation and the frequency] leads to a decrease in velocity.

The temperature decreases with the increase of either of the parameterisvolved.

The amplitude of skin friction increases due to the increase of all those parameters because of which flow
accelerates.

It is true physically also because the increase in these parameters results into velocity increase which
consequently leads b the enhancement of shear stress.

However, the increase in Hartmann number0 , Prandtl number 0 or the radiation parameter 0, attribute
towards the decrease in the amplitude of the skinfriction.

There is always a phase lead of the skin friction.

The amplitude of rate of heat transfer reduces due to the increase of all parameters involved.

For increasing _N) and "Ythere is always a phase lead of rate of heat transfer and remains linear over the
OA1 OAO T &£ j Al 1T OEAARAOAAS

However, for increasing Prandtl number phase starts oscillating between the phase lead and the phase lag
AO OEA EOANOAT AU j ET AOAAOAOS

Nomenclature:

A
Bo
Cp
D
S
G
"Oi
$Ce
Q
Ko
0

-Constant M -Hartmann Number
-Uniform Magnetic Field 0 -Radiation Parameter
-Specific Heat At Constant Pressure 0z -Pressure

-Distance Between Plates 01 -Prandtl Number

-Amplitude Of Skin -Friction 0z -Heat Absorption Coefficient
-Acceleration Due To Gravity 1 -Radiative Heat Flux
-Grashof Number Y -Heat Source Parameter
-Amplitude Of Rate Of Heat Transfer o} -Time

-Thermal Conductivity Y -Fluid Temperature

- The Mean Absorption Coefficient "YAY -Constant Temperatures
-Porous Medium Permeability 0z -Fluid Velocity In X' -Direction
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w -Injection/Suction Velocity 7 -Kinematic Coefficient Of Viscosity
6fRY  -Velocity Components Along Goh ¢>Axis i -Viscoelasticity

ofufr  -Variables Along ity  Directions 1 -Frequency Of Oscillations

Greek Symbols: . -Phase Angle Of SkinFriction

I -Coefficient Of Thermal Expansion [ -Phase Angle Of Heat Transfer

n Z -Stefan Boltzmann Constant T -Skin-Friction At The Left Wall

" -Electrical Conductivity — -Mean Non-Dimensional Temperature

” -Fluid Density Superscripts:

t -Viscosity * -Superscript For Dimensional Quantities
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MIXED INITAL BOUNDARY VALUE PROBLEM
FOR LAX EQUATION

Potadar N. B.

Department of Mathematics/Ramnarain Ruia College/Mumbail9

Abstract: We consider mixed initial boundary value problem for the following partial differential equation

HO M o
We single out these type of equations as Lax type equations because Lax first considered these type of
equations where finite difference scheme applied to such an equation gets linearized and establishing
convergence gets simplified. Hypohesis for writing explicit formula for solution of mixed initial boundary
value problem for Lax equation using Hamilton Jacoby theory is not satisfied. Despite of this we prove that
Finite Difference Scheme converges to the explicit formula given by the Heilton Jacoby theory.

Introduction:  We consider partial differential equation as follows

Z_ ﬂii I ovQ n (1.1)
0 (d:nj 6 W
» o A omo /o0 A o A o
Where ¢fio ™8 AAAOOA 1T £ OEEO AT 1 AEOEIT T Ol 1 Bpitifdrntla ik thdcdaded O
of f (u) convex function of its argument and satisfying additional condition that — - & is discussed in

famous paper by Conway and Hopf [3]. It is stressed in that paper that with not all the forms of | (t) that
explicit solution is possible and boundary condition must satisfy certain conditions. For examplel (t) should
satisfy that _a®d must take values in the range off(u) in order that explicit formula should exist for mixed
initial boundary value problem with flux function f(u). This condition is not satisfied by equation (1.1) and
hence in this case it becomes essential that we write explicit formula and prove that this explicit formulais
indeed a solution to this mixed initial boundary condition. The boundary condition is prescribed in the sense
of Bardos, Leroux and Nedelec[7] so that existence of solution is assured.

Explicit Formula for the Solution of Lax Equation: Foreach &, y, t), x>0;y>0;t>0, C, Yy, t) denotes the
class of pathsb in z - s plane

D={(z,s):z>0, s>0}

Each path connecting the point (y, 0) to (x, t) and is of the form

z =b(s)

where b is a piecewise linear function with one straight line or many straight lines having slopes of value lying
between zero and one. Without loss of generality we can assume that this piecewise linear function contains
either single piece of straight line joining (y,0) to (X, t) or pair of straight lines joining first (0, 0) joining to (O,

s) and then (0, s) joining to (x, t). We assume that6 & N O miHb and | (t) be a boundary condition which we
assume to be a constant to begin with.

Theorem 1: For each fixed x >0, t > 0 define
Y ofD 0,aQa ¥/ i Qi 2.2
e Gu@QE (2.2)

2

¥ gb Qi
o Qi
U(x; t) is a solution of mixed initial boundary value problem for scalar conservation law (1.1)
Complete article is devoted to prove this theorem. We first consider constant boundary data. For constant
boundary data, by following Joseph and Gowda [6] we introduce finite difference scheme and prove that the
solution of this finite difference scheme converges to U(x; ) stated in the theorem. Subsequently we prove
theorem for non constant boundary data by again following Joseph and Gowda [6] . we subject our scalar
conservation law to the following finite difference scheme.
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6afdo Y oad Qodd Qow Y (2.3)

with the initial value 6 ¢fit 6 ® and boundary condition u(0, t) = | () and where D is increment in x as
well as in t. It is in the nature of the conservation law we are studying that transformation can be found which
linearizes the scheme which we will & now.

o} o} "Qo "Qo (2.3)
o] o] "Q6 Qo
Y 0

Y 0 Qo Y
Let"Y =log then it follows that ™Y 2 I B
Tiec Tiec 176 ovQ (2.4)
which implies that
o b G (2.5)

which is linearin ® and &  Thus the transformation from Y to & linearizes the difference scheme.
We have/ ¢ the following formula

when n <k

We have for® the following formula

when n <k

©» B OO ® (2.6)
and when n > k

w B O O B O o (2.7)

We now calculate the expression to which @ converges whenD - 0. We begin with case n < k.

Case 1

: € .
A BN AYARIA
Q

let @ ¢ a QThena m Q Q tanda ¢ Q "QAbove equation then becomes

® B 0 W ®

Denote jth summand in this expression byF;. Sterling asymptotic formula for n! is given by
EAUCPQ ¢

By subjecting to Sterlings asymptotic formula gives

° : = @8)

Multiply numerator and denominator by D— and rearranging these terms we get
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- V& &P oy v
QY ¢ Qo
X ————— (2.9)
Suppose this asymptotic expression fof; takes its maximum at n = N; k = K and j = J provided B, ID and kD

remain fixed in the limitas D- 0. Note that F;can be written

as follows.
y g7 y
Q y Q y Qr
F Yy Yy Y Yy

. Q Y Q y

Yy
\ Yy
W— (2.10)

vy y y
Note that the term Q¥ achieves at j = J; k = K and n = N. The term ‘Q y never becomes
positive except atj = J; k = K and n = N it becomes 1. Therefore &3is made to approach zero, power of e

Yy Yy
becomes negative invite and approaches Q v zero and does not contribute to the sum. Same
thing happens with other terms and in the limitasD- 0. @ then becomes the following.

o I A@F (2.11)
Dlog w therefore becomes

Yi Tog i Aayel T m2 DQ al T@Q a
D¢ Q al T &ZE Q a

Dt Q allaC DQ al Tag

C - ‘8 -
TpQ aEg Q a

Dl Dl Tog

We subject this expression to the limit D- 0 . We have in this limit Dn =t, Dk = x and Dt y. With this the
above expression, which we denote by A(x, t, y), becomes

A(x, t,y) =tlog t- (x-y)log(x-y) - (t-x+y)log(t-x+y)

O @ UIIA @ UlIIA _“6 oQo (2.12)
where we have used that in the limit D- 0 the following term becomes zero.

oo 3
Dl | C————F——F——
TpQ ae Qoa
Case2:n>k
W Y w (2.13)
Where
£ 5 .,
Y .,Qoo W w
¢ Qa = .
w oy @ WA

Individual term in Y is denoted by G. Transformationi+ 1 =k-jandthenj+1=1I
brings G to G where
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£ > " ,
G 0 ..Qw w W

Above j varies from O to k- and | varies from 1 to k. Applying Sterling asymptotic formula andrearranging the
terms we get

G — ) (2.14)

Suppose this asymptotic expression foiG. takes its maximum atn = N, k = K and | &L provided nD, kDand | D
remain fixed in the limit D- 0. After some rearrangement note
that log G. can be written as follows.

y y y M

1T& . (2.15)

1 1 P

y %
Note th@t the term Qv achieves its maximum atn = N, k=K and | = L and the

term Qy—?y— never becomes positive except at n = N, k = K antl= L where it
becomes 1. Therefore aB is made to approach zero, power of e becomes negative infinite and the term itself
becomes zero. Thus aP- 0 we get the following.
y 1 A@ (2.16)
Thus we get

v oS 1% [ ~

Yi iy VeI T @& YQ all §0Q a

YeE Q aliadC ¥YQ al idg (2.17)
Yiie :
cpQ ae Q a

Vi iwC

We will now subiject this expression to the limit D- 0 In this limit Dn =t, Dk = x and Dl = y and we again
denote this expression by A(x, t, y)
Ax, t,y) =tlogt- (x-y)log(x-y) - (t-x+y)log (t-x+y)

O @ UIIK @ UlIIA _ 6o Qo (2.18)
where we have used that in the limit D- 0 the following term becomes zero.

N £
YN E—————
pQ ae Q a
Now we consider W
w B . %% 6o (2.19)
by denoting each term in this expression byL ; , we get on the same lines as we did withY
w i Aa (2.20)
In this case we have the following
Dl T Ye Qal iXeE Qa
Yo al 1'Q « (2.21)

Ye¢ aliXxs Q70Q
YeE Q Qi iac YA idg Yi iag

Let's introduce the following Dn =t, D(k-I) = x and D (i + 1) = s. With these specifications
the above expression, which we denote by B(x, t, s), becomes

IMRF Biannual Peer Reviewed (Referred) International Journal | SE Impact Factor 2.03 / 35



UGC Approved Journal - Sl No 1814 Journal No 43832

B(x,t,s)=(t-s)log (t-s)-xlog x- (t -x-s)log (t-x-s)

ozi ol iag i1 TAC | "Q/ Qi (2.22)
Where we have made use of the following relation
®w Q w (2.23)

and Y1 TaC- masD 0. Let A(x, t, y) be denoted asf(y) to emphasize dependence on yf(y) takes
maximum value at @ @—0. With this value of y, f becomes t log(a + b) and we prove that asD - 0,

1 TaC- Y afd where U(x; t) is as stated in the theorem. Let (t) be a step functions follows.
L) =1I;fortj<t<t,j=1,2.k O<i<t,H 8, <H 0]

Here | j are constants. We take initial time as {, and get for t <t < t,,the following

1 EJ . o m~ gt .
anu@ Yo L, wiai,, 0

2

Qi (2.23)

where Uj(yj) = U(yj ; tj) Here C(x; yj ; t; tj) denote the class of the paths which connect (yj ; tj) to point (x; t)
with slope of value less than or equal to one. Thus we get

I EJ 4. N ” P . i~

anmr; o Ye L, owsiaiL oLl (2.24)

Now we claim that maximum is achieved for somebi C(x, y, t). But this follows from the fact that as long asb
(s) does not touch t - axis maximum is achieved for path having slope less than or equal to one. Further from
the expression for U(x, t) value of maximum is increased by diminishing value of y1, therefore such a path
obtained by diminishing value of y1 ca not maximize the required expression, and it follows that maximizing
path touch the s - axis atmost once. On the same lines as these we can prove the following theorem

Theorem 2. Let ¢ and & be the solutions of finite difference scheme wih | (t) replaced by i and

(S

/ O respectively,where/ 6 ¢/ 0 thenw ¢ &

Theorem 3: Let @ be the finite difference solution of mixed initial boundary value problem with / 6 as a
continuous function of t. Then it converges to true solution of mixed initial boundary value problem.

Proof: Since / 0 is continuous we can construct step functions a(t) and b,(t) such that

an(t) < 1 (t) <bn(t)

and a,(t) and b,(t) converge uniformlyto / o in [0, T]. Let 6% ¢fo and 62 o

so that
Dl 16€ ¢ ¢ DI Taf ¢ DI 16€ ado (2.25)
Using now results on step functions for step functions an(t) and bn(t) we get
oo P Cm T e s B
T A@ 6 aQa Qw | Qi Q — Qi
bl hh @ o . Qi
T E T samopy oo
¢Q T QY0 o
I El, . wp o
¢, L0 Y’ oho
¢ 1 A 0 aQa Qo i Qi Q — Qi
bi° hh @ ¢ . Qi
Letting n - © and then letting D- 0 we get
Y afd 1A o aQa Q/ i Qi
bl hh
5 @
"6 -2 i (2.26)

~ @
and hence the proof.
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Conclusions: Writing explicit formula for mixed initial boundary value problems, in general, is not possible.

Using Hamilton -Jacobi theory it is possible only in case of Lax type equations. We have proved in thiticle

that although hypothesis required to apply Hamilton Jacobi theory is not fulfilled still explicit formula can be

written and we have proved that such a solution is achieved in the limit of finite difference scheme. We could
prove this result only because finite difference scheme can be linearized.
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author to the subject and several useful discussions those took place while completing the project Authois
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MIXED INITIAL BOUNDARY VALUE PROBLEM FOR LAX
EQUATION: AN ALTERNATIVE APPROACH

Potadar N. B.

Department of Mathematics/Ramnarain Ruia College¥lumbai-19

Abstract: In continuation with our investigations on constructions of explicit formulae for scalar convex
conservations laws we consider mixed initial boundary value problem for Lax equation. We have already
derived explicit formula for this problem. It appears that calculations are complicated and are not illuminating
enough to understand recursive nature of derivation. In this paper we provide an alternative derivation for the
explicit formula for Mixed Initial Boundary Value Problem for Lax equation.

Introduct ion: ‘/’1— ﬂﬁi i oQ n (1.2)
o 6 @
) 6o /o
Where we take ¢fto mOI OEAO O 1 OO0EI T AT AOGI 806 AAITEO Al O1 AAOU

provided in [6] and [7] we derived explicit formula for the solution of mixed initial boundary value problem
(1.1). We proved that solution of a finite difference scheme awverges to the solution of (1.1) in the [imitY° T
Where Yis a step length used in the derivations of finite difference scheme for the problem (1.1). Details about
finite difference scheme are given in [1], [6] and [7]. We use the same notations as thos@e given in [1]. We
produce, on the lines of [6],[7] alternative derivation of 6 . The boundary condition is prescribed in the sense
of Bardos, Leroux and Nedelec[8] so that existence of solution is assured.

Derivation of Alternative Formula for w: Note that in the case ¢  "Oformula is already in simple form and
it is discussed in [1]. In the following article we consider the cas& Qand on the lines of [6] and [7] we
attempt to simplify formula for @

w B O Ow B O o (2.1)
: € . .. € . -
W q® W 0 p W 0w
From these two equatiopswe get the following-
W Qo B W 0w Qw (2.2)

We rewrite the same equation
0 Qo “Yi

Where

Y; B O OO Qn
After a few manipulations we get the following

w Q w B Q Yy (2.3)
Which after plugging expression for"Yy  and simplifying becomes the following equation

o Q B 0w Go B Q B o O
B Q B ARATA
After performing few more simple manipulations we get the following:
o Q B & o0 Q & on Q O O o Q O O
B Q B O o  +B Q B AIAYA)
Which upon further simplification becomes the following:
w
Q  +B ©w Go B o o B Q o O 0
Q B ® Do (2.4)
Basic equation in the above formula is of the following form:

[ ng @
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50ET C 30AO0OIEITC60O AOUI DOT OBA theEsamd KhésAof [Hithe followij forAua x A C
iiTco o &li€ -11-€ 1106C -1 iagy -iicc -1 T-e— (25)
Multiply above equation by Yto get 5 5 5
Viteo & eviitlgs 1Y ita i tdm Pyl Piietl
ey ey g ay ey C C a ay

AsYomh 1 AOO OAOiI ET OEA AAT OA AgGDPOAOOEI T h xEEAE EO AOOI
only part which remains is

ey Jii-gy (2.6)
LetYt o AT ¥a dthen we get four separate expressions as

T 1A oig - -1T€6- _ 6 aQa o o_

191 A@ ol g - -1€C—- _ o aQa

T 1A i_olilg — —iie— _ 6 aQa

11 A@ ol g - -1T€6- _ 0 4aQa 0 w_

And the solution to the mixed initial boundary value problem for Lax equation is maximum of these four
expressions.

Conclusions: Finding explicit formula for mixed initial boundary value problems for scalar conservation laws

is very difficult and it depends on functional form of flux function. Lax equation is one of the simplest kind as

inthis AAOA O1T1 O0EIT AT AOT 860 AAIEO AT O1 AAOU 1 AUAO8 /1 OEA
Joseph and Gowda in [6] and [7] we have proved that solution of finite difference scheme converges to mixed

initial boundary value problem for Lax equation.

Appendix: In this section we will discuss a few specific initial boundary value problem. We will give solutions
to the problem when initial data is of Riemann type. We will keep boundary data constant.

Toolid oo m

7 .
dbam 0 ®
omo_ /0
L ph m w pm
0 afm opT

Pure initial value problem (i.e without boundary condition) admits simple wave solution. Slope of a
characteristic is

Qo Q
Q0 & @
(1) Let us impose boundary condition_  p8Then solution of the problem is
6ofp P W RT O
m, 0 ®
Where
., —=0.1282882
2) - ™
In this case solution is
™ w to
7y, , ) \
L s Q0 - oOow , 0
0 oo f

P L,O® PT O

r T 0 ® pT™ 5

Wheret o8 ¢ og ¢ ¢ o¢phlt wad ¢ YPg Yyg

Both these illustrations are just illustrative and such solutions can always be constructed in variety of simple
situations.
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MONTE CARLO CONDITIONING ON A SUFFICIENT
STATISTIC UNDER NONUNIQUENESS

N. B. Potadar

Department of Mathematics/Ramnarain Ruia College/Mumbail9

Abstract: General formulae appropriate for Monte Carlo simulation of conditional expectations of functions of
random variable given a sufficient statistic are known in literature. Sampling from conditional distributions
depends heavily on the way auxiliary variableand parameter distributed jointly. We argue that this joint
distribution of auxiliary variable and parameter gives rise to heuristic to get correct distribution of underlaying
random variable.

Introduction: In statistics we have two different, but not exclusive, paradigms. One is about models which are
parametric and other is honparametric. In parametric regime of statistics models are parametrized and we can
think of drawing samples from the population. In nhonparametric regime we think of order statist ics, methods
like artificial neural networks and wavelets etc. Nonparametric methods, although, are not independent of
parameters altogether they significantly avoid use of parameters. In other words statistical analysis of any
model in one way or other depend on the form of underlaying distribution. Assuming some form of
distribution means assuming dependence of distribution on a parameter. This parameter may be a scalar or a
vector, usually not known in advance and we have to depend on estimator of paranter known as statistic.

In statistics objective of variety of simulations is estimation of statistic which frequently expressed as
estimation of an expectation of the form 'O "Q&d where @ is a random variable. Suppose™Qw is the joint
density of &. Then

0 "Qk Qo Q0 Qw

Let "Yw is a statistic based on a random sampley we may be interested in computing quantities like mean
and variance based on expectations, like above, depending on values 6f® 8 It is one of the most important
guestion in statistics is how to carry out evaluations of integrals involved in computations of expectations.
Monte Carlo methods are precisely developed to perform these kinds of calculations of expectations. Monte
Carlo methods essentially use drawing samples from known distributions and then calculating mean gives rise
to sought expectations. These calculations are based on some known statistic which approximates
corresponding population parameter. It is however a quesion the extent to which sample drawn resembles to
original distribution. Lindgvist and Taraldsen have suggested some methods which makes drawn samples
using statistic indeed correspond to original distribution.

Work of Lindgvist and Taraldsen:  Consider a random variable & along with a sufficient statistic Y In the
following we give one heuristic to get a random sample for Gif given a sufficient statistic “Y8We adopt the
notations and framework given in Lindqvist and Taraldsen. In their paper Lindquist and Taraldsen it is
assumed that a random variable™Y (referred as auxiliary variable in abstract) is given with known distribution
such that OR'Y for given population parameter —can be simulated usingY. In other words there exist
functions ..AT A such that given —distribution of .."™Yh—, T ™Yh— equals the joint distribution of
WH'Y8Their approach is to first draw U, then determine parameter value—such that * "Yh—  oand then use
® ..."Ya) as the sought sample. Bgen and Lillegard (1997) have shown that in generadd  ..."Ya-} may
not have the correct distribution when —is not uniquely determined by 6A T éfrom the equation T 6h—
oeven when® is uniquely determined. Their claim is & is distributed like X given t. Let "Qd be a density of
U. Let —be distributed like g8Conditional density of T "h— given Y 6 is denoted by & 06 8Note that as U
and g are independent, 6 , as a function of t, ist 6h— for fixed u.
Then it follows that for an arbitrary continuous function %o h
O %®SY 0 —O s
Oow
Where
06 O%..0fg stolg 068
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Basic advantage of these formulae is that quantities involved are functions of u and hence they can be
simulated with a judicious choice of g. We will comment on choice of g afterwards. Thus, problem of
simulating X using Monte Carlo method have a solution if T 6h— 0 has a unique solution for fixed u.
Lindgvist and Taraldsen have further treated the case in whicht 6h— depends on u only through some
function of u.

Heuristic in Case of Nonuniqueness:  Most important question is that how to proceed if T 6h— o0AT AOT 6 O
have a unique solution. Suppose now thatt 6h— o has two solutions for fixed u denoted by—A T A—. In
order to handle such cases we propose that iterations of random samples can be used. Consider now first
solution —. Correspording to this solution we have distribution of ...6h— . This expression is evaluated for
fixed 68Now we take iterates of..8Denote random sample for u byo
6 ..6h—.06 ..6h—h 88246 .0 h—
This sequence of random variables asymptotically goes to distribution ofd given a sufficient statistic T.
Conclusion : Lindqvist and Taraldsen have successfully treated the case wheth 6h— ofor fixed u have
unique solution. They also have consideredsome cases in which there is no unique solution to underlaying

equation for —in terms of t. We have proposed one heuristic which is mainly of theoretical concern. However
with the help of modern powerful computing techniques validity of such an heuristic can be tested.
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ON gl SUMMABLE SEQUENCE SPACE DEFINED
BY ORLICZ & MODULUS FUNCTIONS

AND ITS CONVERGENCE

Anindita Basu
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Dr. B. N. Dutta Smriti Mahavidyalaya/Purba Burdwan713407/West Bengal

Abstract:  The motivation of this work is to introduce and study the generalized sequence space
0 & M AGA defined by using the concepts of lacunary sequence— Q ,s hD $ -summability, the
sequencel 0 of Orlicz functions, the sequence O "Q of modulus functions and multiplier sequence
"Q ,i 1 Further, a paranorm structure has been imposed and the concept 0§ -lacunary statistically
convergence with respect tosHil ; § summability has been studied on this sequence space.

Keywords: Lacunary Convergence, Lacunary Statistical ConvergencgFh 'l ; $Summability Paranormed Space.

Introduction: LetB & be an infinite series with the sequence of partial sumsi . Let r} be a sequence
of positive real numbers and0 B 1N .TheseriesB & is said to be$Hil; s-summable [1] to the finite
limit Jbif

0 —B Qi O /as P b

and is said to be absolutely$Hil; s-summable ifB © 06 s Hb.

In [7] it is shown that, given a sequenced ¢ andfor Q p,

n .

% W O O — U @h
00

Note that, for any sequencesiftoand scalar_, we have%o @ @ %o & %o @ and%o _ & _%o .

An Orlicz function [17] is a function 0 d, i+ © TifHb, which is continuous, non-decreasing and convex with
O0m mdw mforw mandd w© Hb as ®O HAf the convexity condition is replaced by the

conditon 0 @ ® O ® 0 ,thenthe function is called modulus function [28].

An Orlicz function is said to satisfy & condition [19] for all values of a3 if and only if 0 ¢w 0 0 @ for

v Tho T8

This condition is equivalent to 0 0 & 0 0 0wh!ew Tt O p. Also an Orlicz function satisfies the
inequality 0 _ w _0 o form _ p which is again equivalent to the inequalitity | @ 0 ® T o for

| i mhe T8

Introduction of modulus function [28] and Orlicz function [17] has given a new dimension in the development

of the theory of sequence spaces. Ruckle & used the idea of modulus function "Qto define a new sequence
space/b Awhere

bE @ @ dB ADs .

whereas Tzafriri and Lindenstrauss [20] used the idea of Orlicz functionM to construct the Orlicz sequence
space

& @ @d8 - ¥ HhAIG iM .

which becomes a Banach space with the normi® Q¢ @8 mB - = p

Later on, Various sequence spaces defined by Orlicz function and modulus function have been developed and
discussed by Mursaleen et al. [23], Choudhuret al. [10], Gdngér et al. [16], Nurray et al. [24], Ghoshet al. [15],
Basu et al. ([3], [4]), Savas [32] and many others..

Using the idea of Orlicz function and the concept of s hD ssummability, Bhardwaj and Singh [7] introduced
and studied the following class
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6 ORh A A dgp - T2 HhAIG) M 1, where
i i be a bounded sequence of strictly positive real numbers.

These classes have been further generalized by Altin et. al. [1] by choosing the elements Af A in a
seminormed spaced with seminorm 1,

O O R mA Anx 8dB E - N2 HhAEIGD (M 1t
wherei i is a bounded sequence of strictly positive real numbers.

By a 'lacunary sequence' [12] we mean an increasing sequence of positive integers 'Q where Q 1, and
T Q@ Q O Hasi O Hb. The intervals determined by —are denoted by'O Q@ h'Q . Freedman et al.
[12] introduced the space of lacunary strongly convergent sequences as follows:

0 ® wdl Ed Q B, w is mhAG iiA

Statistical convergence for real and complex sequences was first defined by Steinhaus [29] and then H.Fast [11],
Buck [8] and Schoenberg [33] independently. Fast extended the concept of sequential limit which he called
statistical convergence. Schoenberg gave someabic properties of statistical convergence and studied the
concept as summability method.

Asequenced @ of complex numbers is said to be statistically convergent toL if for anyT T,

[N Egtsb gday 0s s m

where the vertical bar denotes the cardnality of the enclosed set.

From the point of view of sequence spaces this convergence method has been generalized and developed by
Fridy [13], Salat [30], Connor [9] and many others. Later on, Fridy and Orhan [14] combined the concepts of
statistical convergence and lacunary convergence and introduced a new convergence method known as
lacunary statistical convergence. Recently these convergence methods have also been studied on fuzzy
sequence spaces by Nurray [25], Savas [31], Basu [6] and many others.

Being motivated by the existing literature, the present author has made an attempt to extend the study on the
sequence spacel & ) RGiH of sequences of the elements of a Banach spacé defined by using

sequences of modulusO "Q as well as Orlicz functions 0 0 8Further lacunary statistical convergence
has been studied on this space.

Throughout the work, the following defnition and standard inequalities have been used frequently:

Paranorm: Let X be a linear space. ThenQD®© 'Yis called paranorm onX if for x, yN ®and any scalar_, (i)
"Qw (i) ® —implies Qw T, (i) Qo MOV © Qo Qw;v)Qhe _ o
masé O Hp, whenever_h © _ and & © @ for scalars_ h_ and vectors & hw

(foralln ¥ )N X. The space MQ is called a paranormed space.

If (i) is replaced by (i) "Qw mif and only if @ —then "Qis called a total paranorm ond.

Inequalities: Let i i be a bounded sequence of strictly positive real numbers withrt i o 4Gib
O a dophg LY 1 A @h'O 8Let "Obe a modulus function.

1L os OwHs s M2

2.8s8 | Aglms N21]

3. "Q_ p SS "Qp,[22]

The Space J_P £, 1 Rl R hwhy:

The new sequence space is now introduced as follows:

Let 0 0 be a sequence of rlicz functions satisfying

1 EJ 00D - nAIG Ii’A n8888 &2.1)

Let™O  "Q be a sequence of modulii satisfying

1 Ed Qo6 mhwhere6™ Thb888888j as8a(

Let whABE be a Banach space over the complex fielé¢ and i i be a bounded sequence of strictly
positive real numberswitht 1 OO "Ch0 | Aghy ,"Y | A@hO8

let®w ¢ ¢ @ @ N0 Q%S N O
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Where 0 & is the class of sequences of elements @b. For simplicity, throughout the article & ¢ ¢ will be
denoted by &

Let— Q AR AAODAROANeleflO mhn @ Q and™@ Q z77Q W as'® H.The
intervals determined by —are denoted by 0 Q h'Q.

The following sequence spaces are defined as follows:

® hRRN o odEl —B, Q0 2% P mi nAG A /B E .
O hmdi o odEI —B. Q0 =2 2F mi nAG I"A mh/b e .
O hRO & &dEIi —B, 0o =22 %F m A& i"A mh/b E

Particular Case: Some known sequence spces can be derived from these sequence spaces by restrictirfjioi
andi as follows:

Choosingi thd ph” ph"Q "®% d=w,1 pforalli, & s we have the spaces of Pehlivaet. al.
[27];

M ® odEi —B, Qw /s nAG iM;
Choosingi 1hd "@” ph% =0 (a), where o (a)= = ., & denote the i-th iterate of
the mapping ,, at n, we have the space of Karakayat. al. [18];
x & © ®wdEI —B. Qv As ndl EAIBIlI;U

Choosingd 0hQ "& ah% & whi phEIAJG- ¢ AT @ 1 we have the spaces of
Parasharet. al.[26];
GOm o odEi -B 0 % nE& Ii"A n;

Choosing 0HQ "@AT A E hs mwe have the spaces of Basu [5] ;
@

% RO & 4 Bof —B., $s0 == nAEIG i"A n
Main Results:
Theorem 3.1: . ® h A3 and . ® h A are linear spaces over theeomplex field C, where

0 0 and"O "Q satisfy conditions 2.1 and 2.2 respectively.

Proof: We will prove the result for . ® R RA3i . The other case is similar.
Leted & hd & N . & h G

andh N E.

i1 Ei —B, Q 0 =2 23F n, forsome” Th

and

I Ei —B. Q 0 232 2=F nh for some” T8

let! T Az p 9gs mhcp $sm

Since each'Qis non-decreasing, subadditive and 0 is non-decreasing and convex,
AQSo | & | B A

Q ¢
. AQ| OSE AQS] OB A
U ”
P.. . AQ%| OSE , AQI%] BA
C_Q V) —_— U E—

N
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. AQSo | OSAE . AEQ] (BA
vV —————— v - %

AQ 6o (b £ AQ 6o (1) A
o 0 b SV,,l S o 00 SV"I s

N N

whereO [ A@hg  8This proves the linearity of the new space.

Theorem 3.2: . ® h RA3i is a total paranormed linear topological space under the paranorm

Q) ETE ¢—-B. Q 0 2= %F p AIGD ALAER E &8 BB Ui |

@ ® N . 9% Rdr whereeachd satisfiess -condition.

Proof: Let® & N . & h ReAOI 8

Its clear that "Q® "Q & and taking | I pinthe previous theorem we get,’Qd @ QO Q0.

Also, ford —HQ® masd m 1 for eachi,
where —denotes the sequence TiTB 8 8Now suppose that"Q® T

Then for a given-> 0, there exists som& 1 " - such that
P . . AQO% WSE
- Q0 ———
Q. -
P .. AEQ OSE
= Q0 ——
Q N
for each’Q

If possible, let, 0 —i.e.,® mhfor some d N Q.
Then letting - © 1 and using the properties of A8&, " Qand 0 d we get
AEQSho 'S A

o B
and hence

"B ‘9 b AQFbo 0OS A o
Q ) -
which is a contradiction. Hence , —

Next we will show that, "Qis continuous with respect to scalar multiplication .
Let Av . & h A3 and _ N E8To show'Q_ &° 18

£ S S A

Since™Q_® ET A ¢—B. Q 0 ph for sufficiently large and Q  phgF8

We can write,

v p sl 4 i
rr ) . rr
o ¢ ET.EY o b RQFo 03 £ .

rQ 1 (v
rr P Cr
tr G

where] e

Since p $8 I Aghp ss

then p sSS

i Aghp ss T,
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HenceQ_& | A@hp ss

, A ,
I’I’ 1 q’ I,I’
Uy rp
El A& RO Yo (oS A
rv R M 0 % ol
r’r N I
w AIQDAAEREEC AT U
Which converges to zero asAv . & R&AGI .
Next let _© mifor some scaler_N eand® @)V . & B R

Then for arbtrary positive number] T, there exist a positive integers such that

£ S SE

—-B. Q0 =—=—2=F - forsome” TmAT AIAGQ 08

Hence

P . AQFo DS A i
Q C

N

for some” Tand forall™@ (8

Now let T $S p8 Since each 0 satisfies & -condition (i.e,0 0w 00 whd m™D p ) and by
Inequality 3 ., we have for all'Q 0 we get

P . . AEQS %S A&
— QU —mMM
Q . 1
p <SS
P ., . EQ% 0SA 7
— Qo0 —M —
Q 1 C
Since U is continuous everywhere in b
then for Q 0,
ro=—B., Q0 =2
is continuous at 0. So, there is d TK] p
suchthatg 6s - form<o 9.
Let there exist Bsuch thats s 1 foré 6.
Hencefort 6 andQ 0,
T
p L. QS % WS A& i
oy Q v - —
Q . G
for 'Q phchs & .
Thus
7
A£QS %o DS A
% Q p SR ORA i

N

forall¢ 6 andforall Gand hence 'Q_ &° m®I_° 18
Consequetly g becomes a paranorm function on the space. & h RA3i  becomes a paronormed pace.
We now study Lacunary statistical convergence method with respect ta§Hil ; s summability [5] as follows:

Lacunary Statistical Convergence with respect ~ $Hil; ¢ Summabilityon " <+ 4 AERERIAv:
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A sequence® © is$¥ statistically convergent to /B & with respect to SHil; s summability, if for any
i mh

iOE% Y QYEQS O TBAE - s
The space of all $% -lacunary statistically convergent with respect to SHil; summability is denoted by
S) FT
Theorem 4.1 1f %0 & © Jhthen®d & N ¥ jgais-

Proof: Let %0 & © J/bThen by definition of modulus function it follows that "Q$% & Ji8 © mas"® Hand
consequently, Q%o 0 I8 £° Tsince®is av -space. Hence® ® N % RE; 5

Theorem 4.1 . O h R O SBshsr B

Proof: Let ® @ N . & h O
ThenmJB' E such that
AEQP%o 0S JbE

N ) o
= -

for somem T8

o A TbAE o A Tb&E
NOW, —B M 0 £ 8 S /bE —B £ 8 R JbA

p . AQP%o Os JbE
= L m
Q N
£ S s Jb&A
p AQFo WS JbE
£ S s /b&
—B N 0 T
Y3 vs s /b&
B . iETY T h
£ S S /b&E vo-
— O QEQ OS JbE - i ET0 - h o -
Taking limit i © Hbon both sides the result follows.
Remark 5.1The inclusion is strict.
Example: Suppose that 0 0 is unbounded andi  pfor each’Gand — "Q be a lacunary sequence, so
that there exist a positive sequence @ suchthatd — 'Q for some” Tmand & phf8. Also we
: . ® h Qa .
define, £Q OSA/A . . . y
o O i oEASKEOA
Then we have, — Q@ "QEQ o OSAE - — O MA@ W
o v %R R
Consequently, ® @ w18
But,i Eof —B, 0 2 2F T
Hence & & e . & h A .
Theorem 5.1: . & h i Bspgr £ AAs bounded for each'@
S%hsh

Proof: Suppose thatd is bounded for eachi and @ & UL * 1L Hence there exist an integerv such
that 0 o 0, foreach'Gnd each® Tt Then for each™Q
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P AEQFho OS A o AEQSho WOS A o . AQS S A
0 vV ——— o) vV ————— o) vV ————

A S S A £ S SA

b — O UEQS DsE - + [ ETO - RO -

Now, taking limit as '(® Hbthe result follows. The converse follows fromTheorem 4.2. Hence the proof.
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SOME CHARACTERISATIONS OF 2FUZZY
N-N-B- INNER PRODUCT SPACE

Thangaraj Beaula
Dept of Mathematic/T.B.M.L College/Porayarz 609307/India

Daniel Evans
Dept of Mathematics/T.B.M.L College/Porayar 609307/India

Abstract: The purpose of this paper is to introduce the new notion of 2fuzzy n-n b-semi inner product space
and 2-fuzzy n-n b-Hilbert space .Some characterizations of this space is dealt with.

Keywords : 2-Fuzzy N-N Inner Product Space, 2Fuzzy N-N B-Hilbert SpacAh " AOOA1 860 )1 ANOA
Theorem.

Introduction:  The concept of fuzzy sets was introduced by Zadeh [22] in 1965 which began a new
revolutionary field in mathematics. The theory of 2-norm on a linear space was given by Gahler[9](1964). In
1984 Katsaras [12] gave the notion of fuzzy norm on a linear spaceeveral different definitions of fuzzy normed
spaces were given by Cheng and Mordeson[2], Bag and Samanta[l]. R.M.Somasundaram and
ThangarajBeaula[17] defined the notion of fuzzy zZhormed linear space, {F(X),N}, further improvised by
proving some standad results in [21]. The concept of 2inner product space was introduced by C.R.Diminnie,
S.Gahler and A.White [4]. Further various researchers established new notions of fuzzy normed linear
space[6,7,8,12,15,16] and fuzzy inner product space in [5,12,V3pyabalaji and Thillaigovindan [18] introduced
fuzzy n-inner product space as a generalization of the concept of finner product space given by Y.J.Cho,
M.Matic and J.Pecaric in [3]. ThangarajBeaula and Daniel Evans extended the notion of [18] to 2 fuzzyn
inner product space in [20] P. K. Harikrishnan, P. Riyas and K. T. Ravindran gave the proof of Riesz theorem
for 2- inner product spaces which hold for b-linear functional. The notion of 2- fuzzy n - b metric space was
given by ThangarajBeaula and ChistinalGunaseeli[19]

In this paper the notions of 2-fuzzy n-n b-inner product space and 2fuzzy n-n b-Hilbert space are introduced
and some standard results are proved.

Preliminaries:

Definition2.1: ([18]):

Let n N and X be a real linear space of dimegion greater than or equal to n. A real valued functior&f8 FBzon
8 1N 8 1 8times) = X " satisfying the following four properties

i) Ao 8 Foo &= 0 if and only if o M8 hw linearly dependent.

i) /o M8 hwo Ais invariant under any permutation

iii) Ao M8 Fod ca=g s M8 hoo & for any| s real

iv) Ao B ho  ho o A8 o hosrad B b e

is called an n-norm on X and the pair (X, A48 88 is called n-normed linear space.

Definition 2.2:  ([22]): A fuzzy set in X is a map from X to[0,1], it is an element of [O,1>]

$ A Al E OE ([17]): &ed X ik a nonempty and F(X) be the set of all fuzzy sets in X.

If f v F(X) , f={(x,w)|x~¥ X and ¥ (0,1]}hen f is a bounded function for f(x) ¥ [0,1]

i i EBAQ sA& oqsnyqs OABGAOOAAGDBA EDAAAIEEAADAIOPAAA T OAO
OAAT AO 1 Ol OEPI EAAQCETT AOA AAA AA AU

EAEC Kgj @h bQqQEYy WhjummAigA @ EWnhdbq

and kf = {(kf,l)|(x,u)" f,} where kN K.

The linear space F(X) is said to be normed space if forvery f N F(X), there is associated a normegative real
numbers ||f|| called the norm of f in such a way that
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(i) |Ifl|= 0 if and only if f = 0 For||f]|=0 & {J]O,W]]|(x,nw) "f}=0,4 x =0, W (0,1p f=0.
(i) [1kfl[=|KI[Ifll, kN K.

For|[kf||={|[kC< I [1/(x,p INf

and kN K}={K||[ O )I/O) N 3=(KIIF]-

i EEEQ ss/Z& ECssMNusEXEssSEsS
&1 Os s AECs s Ko s"BjhaitwfEj U
={I(x+y),(W" & Qs 8 e W@a}u S
NMesS# PO DEe U WIADh B Nai=(lfll+WIN.- A § UheQ

Al O AOGAOU AEhC

(O O
4dssfTdhu

RS
Uh

Definition 2.4: ([5]): Let F(X") be a linear space over a real field. A fuzzy subset N of F{X"™ R is called 2
fuzzy n-n norm if and only if

(N)forallti R,t¢0,N (fh 8,h)4& 0

(Np) forallt I R,t>0, N (fh 8,y 1if and only if §h 8,har& linearly dependent

(N3) N (fh 8,fit)As invariant under any permutation of fjh 8,h /E

(Nyforallti R,t>0,

. oot
N (fh 8 B & & N 8nh7T_)
C

(No foralls,ti R, N (fh 8,k £ s+t)2

min {N(f i 8.5)B(fhH 8, B)E

(Ne) N (fh 8,8) & a non-decreasing function of i Randl Ed . &8 hED
The (F(X")", N) is called a 2 fuzzy n-n normed linear space.

Definition 2.5: ([21]): Let F(X) be a linear space over the complex field C. The fuzzy subshtdefined as a
mapping from F(X)3 F(X)3 C to [0,1] such that for all f,g,iv F(X) anda~ C

(1) for s,tv +|s)

t).h(g.h.|s))}

(1) for s,t* Chi(f.g, |s{)

2 min {h(f,h,

(I3) for t ¥ C h(f,g,t) = h(g,f,1)

(Is) h(afg.t)=h(f.g).a 0

(Is) h(fft)=0forallt~ C\R’

(le) h(f,fty=21forallt>0ifandonly iff=0

(I7) h(f,f.): RO I(=[0,1]) is a monotonic

non-decreasing function of R and

lim h(fff)=1as @ b

Then h is said to be a 2fuzzy inner product space on F(X) ad the pair (F(X),h) is called a 2fuzzy inner
product space.

Definition 2.6: ([20]): Let F(X") be a linear space over a real field. A fuzzy subset N of F{X"™ R is called 2
fuzzy n-n norm if and only if

(Npforallti R,t¢0, N (fh 8,ht)&E 0

(Np forallt i R,t>0, N (fh 8,ht)& 1ifand onlyif th 8,har& linearly dependent

(N3) N (fh 8,fit)Eis invariant under any permutation of fh 8,h &

(Ny) forallt I R, t>0,

L R |
N (ff 8 R & £N(fh 8nh715)
C

(Ng) for all s,ti R, N (fh 8, #E s+t) )

2 min {N(f h 8,5)A(h 8 fin} £
(Ne) N (fh 8,8) & a non-decreasing function of i Randl Eo . A8 D=1
The space (F(X)", N) is called a 2 fuzzy n-n normed linear space.
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Definition 2.7: ([20]): Let F(X"),be a linear space ovek. Define a fuzzy subseth defined as a mapping from
[F(X™]™5 E to [0,1] such that

(Fh 8.8 [F(X")]™an E satisfying the following conditions.

(1) for g,hv F(X), s,tn i

h (fi+ g, h,th 8.hlte |3)) 2

min {h (f3h, th 8.t h (g, h, th 8,A|E)}
(1) for sti € h (f,g, £h 8,|) 2

min {h (f, f. A 8.h|2 h (g, g, th 8.t
(I3 for tl E

h (fy 9.0 8. h (9, f, &h 8.AFE
(ly) apa, | E, a, 0,a, 0

N R |
h (a]_fl, azfl’fzh 8n]1]),/E h (f], fl’fzh 8nh_ET)
11 2

(Is) h(f,fL fh 8,8),£0 | tie/R"

h (f,fL.f2h 8./t £1) t >0if and only if fh 8,&rélinearly dependent.

(le) h(fyg - 8,ht)As invariant under any permutation of f,g, Hbh 8,h /E

(I)" t>0 h(fy flyfzﬁ 8.f)AEh(f,, fp, fy, 38 b, AF

(Ig)h(f,g,6h 8,fit)4s a monotonic non-decreasing function ofe and 1 Enl AchAas i) =1
Then h is said to be the 2 fuzzy n-n inner product F(X)" and the pain (F(X)" ,h) is called

2 - fuzzy n-n IPS.

Definition 2.8:  ([20]): Let (F(X"),h) be a 2fuzzy n-n IPS satisfying the conditionh (f;, f,f,h 8,/t%E > 0,
when t > 0 implies that f;f.,h 8,h &e linearly dependent. Then for all av(0,1), define

||1:1,...,fn||a =inf {t;A(f,,f,.f,.&.f, t? )2 a}a crisp norm on F(X") called the a-n-n norm on F(X")
generated byh.

Fuzzy N-N B-Semi Inner Product Space:

Definition 3.1: Let (F(X"),&¥8 B be a n-normed space and f,¢§ F(X"), then f is said to be borthogonal to g if
and only if there exists & F(X") suchthatfor AOAOU s h

A8 MEE 0, & QA8 hEE ¢ ABA8 hEe andg T

Definition 3.2: Let F(X") be a linear space over a real field. A fuzzy subset N of [F({] ™ R is called fuzzy
n-n b-norm if and only if

(Npforallti R,t¢0, N (fh 8,ht)/&E 0

(Np) forallt I R,t>0, N (fh 8,4 1if th 8,harE linearly dependent

(N3 N (fh 8,ht)4s invariant under any permutation of fh 8,h /&

(Ny) forallti R, t>0,

o .ot
N (Ff 8 R &#N(h 8nh7£P
C

(No) for all s,ti R, N (fh 8, £ s+t)2
ufmin {N(f h 8.s)A(fH 8 finy, A O o
(Ne) N (fh 8 8 h O q-dde@asiAg fundtidn of i Randl Eo . A8 hEO
The space (F(X)", N) is called a
2- fuzzy n-n b- semi normed linear space.

Definition 3.3: Let F(X"),be a linear space ove®. Define a fuzzy subsets as a mapping from [F(X)]"™ 2 to
[0,1] such that (f7 8,8f@" [F(X™)]™ " and a~ 2 satisfying the following conditions.
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(19 for g,hv F(X), s,tv 2
S (fl+ g, h, fzﬁ 8nﬁH’cB)

2 umin {s (f,h,in 8, (g, h, Lh 8,fsyd
(1) for sti 2 {s (f,g, Hh 8,M@O

20 [min {5 (f; fuf2N 8,fs¥E (9, 9, BN 8,AE
(I5) for tI 2

s (f, 9fh 8.)) &s (g, fi £h 8.fi) £

(|4) ag,do, |2 , Ay, O,az, 0

t

s (afy afyfh 8.0)& s (fi, fLfh BHﬁﬁ)
1Y ~2

(1) forall ti Rwitht ¢ 0Fs (f,fy .0 8,/8) A0

(lg) forall ti Rwitht 1t s (fufy fh 8,f) &1 if

fh 8,&r&linearly dependent.

(1) s (f,g f.h 8,748 invariant under any permutation of (f.h 8. A&

(g " t>0 s (fy, f]_’fzﬁ 8nﬁt)ﬁE

=s (f2 fz,fb f3§ By, AF

(lg)s (fgfh 8,ht)AS a monotonic

non-decreasing function ofe andl Ed s AChASB hED =1

Then h is said to be the 2 fuzzy n-n inner product F(X)" and the pair (F(X)" ,s ) is called

2 - fuzzy n-n b-semi inner product space.

Definition 3.4: In a 2 fuzzy nn b-inner product space, define EFEMA  =inf{t s (AChASB hEQ? d}.

Definition 3.5: Let (F(X"Q h & q -#z&ky nA inder product space . If {} are linearly independent in F(X"),
then {h;} is said to be a borthogonal set if for d ¥ F(X"),

EFEM =1 ifig
=0 otherwise

Definition 3.6: Let (F(X"), ) be a 2fuzzy n-n inner product space over K and d F(X") then

a) A sequence {f} in F(X") is said to be bCauchy sequence if for everyr> 0 there exists N>0 such that for
everymn2 N, £ AABHME -

b) F(X") is said to be bHilbert if every b-Cauchy sequence is convergent ir?-fuzzy n-n-b semi inner product
space.

4EAT OAl €é¢8aj " AOOAd F(X"),) 1 )RR & AflzEyGi-@ dnner product space over the scalar
field K, then

B s 'GMCMIA s —— AERMAWES hEE which holds for any hv F(X") whenever
C,dv F(X") such that d~ span{C h &Rand CICrA  =0ifi jand
CRCA  =1ifig
"E"l 1 dByHilefinition,

AEAVES Ee K ET £ o/B8EQ)R B Ah At A CAK

wherer K E1 &Es @qdmsiME®)Ashq

Consider

AEPAVES e =infe O u (A MBG)Zs i

K ET Adr1 Qdur €MESHEO)?2s 41 O ET £ 6 OdEL A € &YREOE h
2s d

=10 El £ o 0dE]GEAs MDY EF

28 d
=1 O inf{st sOET £Cs Oquj Eh
,C /B8 hEOD)?s q

3ET AAG ) ABEO) = 1
AEPARES FEE 2T O 51
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Sincetsr s
=00P ¢ El G, G AOED)2 BN
It followsthat B s "GCMA s —— AEhAVES hEs

Theorem 3.8: If {C is a b-orthonormal set in a 2-fuzzy n-n-b-Hilbert space and if v F(X")
thenthe setS =€: "ACMA 0} is either empty or countable

Proof: Suppose "(CIMA =0 then the set S is empty.If "GCIMA 0 we need to prove that S is countable.

For each positive integer n consider the set,
£hh 8h &

3={C:s @CRA s ———}
"U "AOOAI 6® SETMAMROAT E-OUMRNAWVES WEE
If the set 3 contains n or more than n then, elements of F(X) B s "ACMA s —— AEhAWVES WEE

xEEAE AT 1T OOAAEAOO "AOOGAI 80 ET ANOAI EOUS
Therefore 3 should have at most n1 elements (i.e)3 is a finite set.
By definition of 3 , Sz 3 &ince countale union of finite sets is countable S is countable.

Definition 3.9: Let (F(X"),/¥8 fB&) be a 2fuzzy b-n-n-normed space. Let W be a subspace of F(¥X and
d N F(Xn) be fixed. Then a map T:Wx#Aa0 K is called a blinear functional on Wx 6&dwhenever for every f,g8 W
and kN K,

(i) T(f+g,d) = T(f,d) + T(g,d)

(i) T(kf,d)=kT(f,d)

A b-linear functional is said to be bounded if there exists a positive real number M 0 such that

a4 Ms MaBEVES Ves

It can be seen that

A= sup{d A sV hee 1)

A= sup{d A sV hee 1)

AL E= sup

{# A g sBNVES MEe NeBEB hEE 0}

And & A\ s mAAEAVEB VEE

For a fuzzy nn-normed space (F(X),A88 M8 ) and d¥ F(X"),denote & 8 * to be the 2 fuzzy nn Banach
space of all bounded blinear functionals on F(Xn) x6Aawhere 6Adis the subspace of F(X) generated by d.

Theorem 3.10 (Riesz): Let (F(X"), ) be a 2fuzzy n-n inner product space and {C} be a borthonormal set

in F(X") and E VK then

1) If +E C converges to some h in the 2fuzzy n-n semi normed space (F(X), A48 &) then "BCIA =
E foreachnandt£Es H

2) If F(X") is a 2fuzzy n-n b-Hilbert space andts£ s  Hothen +E C converges to some h in the 2 fuzzy m
b-semi normed space (F(X), A88 sz )

Proof:

1) If H% C converges to some h in F(X), then h = +E C, since {C} is a b-orthonormal set it is obvious that
"‘OCMA  =E foreachi.

"0 " AOOAIT B0 SEBCN O4 | E-O-UEMIES e

ThereforetsEs  Hb

2) For m=1,2,3,.. leE :.I.S EC

Form j,E -E=B EC

We have E  EhAWVES hE

= E ERE EMRA

=B EC

Therefore {E } is a b-Cauchy sequence in F(¥), and since F(X) is a 2fuzzy n-n Hilbert space, {E } converges

to some h in F(X")

Theorem 3.11: Let {C } be a borthonormal basis in a 2 fuzzy bn-n Hilbert space F(X'), then for every h in
FX),h=t GCTA ¢
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Proof: Since {C } is a borthonormal basis in F(X"), {cd EO A AT 01 OAAT A OAO8s " U

B s OCIA s —— AShAVES Vex
which impliesthat + "®C A C converges to some f in F(X),

(ie)f=t QCI’]A c.

Also "@CTA = QCTA ICTA

= ACTA o

Thisimplies Q "®CIMNA =0

Therefore (h-f) U C foralln

Iff hthenletr=(h-fy/ &£ MBHEB VEE which implies A0VWHESB hEE =1
Since(hf)U C foralln, iACM =0

Therefore {C ¥ {f} is a b-orthonormal set in, which contradicts the maximality of the
b-orthonormal set {C }. So f=h. Hence

h=t GCMA ¢

Theorem 3.12: Let (F(X") be a 2 fuzzy bn-n Hilbert space and ™ &8 7, then there exists a unique f F(X")
suchthat T(h,d) = "B@R  and &&= AANVES MEE

Proof: Let {C} be a borthonormal set

Form=1,2,3,.l6E=B 4 CPAC

Since {C} is a dorthonormal set,

AERAVES EE =B & CRAs=r

AlsoT(E,d)=B & CRs=r

Since T is bounded

4 ChAs &EMEB EE which implies f YY)

Letingm©® b B A CPAs &&e

Let {C } be a borthonormal basis for F(X").

Set' ={{C};T(CPA mandsince' iscountablelet’ ={CHhC h

Thent#t CPA's  Ho. Therefore by Riesz theoremt4 C bA C converges in FK").
Letf=44 CPA C, we claim

T(h,d)= "BIQ  for every v F(X").

Let hv F(Xn), then {C; "®C M\ }is countable.

Letitbe {I A B h. Then

h=+ @ M 1 ,thatimplies

T(hd)=T(+'& M 1 g)

It is sufficient to show that

Thd)= T MA A O I K Yhahéhs
Fix m and

let 1 MR =B 4C,d) 1 ICMA

IfC 1 forsomel h

Then 1 M  T(C M) =T( ,d)

Ifl  C forsomen,then 1T A =0

That implies T(I ,d)=0

Therefore T( PA AR forallm

Hence T(h,d) = "NaR

To prove uniqueness

Let ££NF(X" suchthat T(h,d) = "®MER  and T(h,d) = “ER

That implies "G AR =0and

hence £ A

In particular /& AVE AN =0andhence/E /A= kd for some k' K
Hence £ /&N 6AG

Therefore f is unique upto d-congruence

Now to show that 44£= ABANVES hEE

If T=0 then T(h,d) =0 forallhand also IR =0

Therefore f and d are linearly dependent and hences®hES WEE = 0 implies

M= pRVES hexs
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IfT OthenT(h,d) Oand “HAR 0
Therefore f 0 or f and d are linearly dependent
Hence #\NVES WEE = "IN
=T(fd) meaRNVES VEE
Therefore
ARNVES VEE  AAE 1)
We also have
Thd)=s MIQ s
AEPANVES WEE ARAVES hEE
Hence &&= sup{g EPA sAERAVESB hEE =1}

=sup & IR ¢
ARVES WVEE 2)
From (1) and (2)& A= B\ VEE
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THE EFFECTS OF INHOMOGENEITY ON ION ACOUSTIC
SOLITARY WAVES IN NON UNIFORM PLASMAS

L. B. Gogoi

Associate Professor/Department of Mathematics/DuliajanCollege/Duliajan-786602/Assam/India

Abstract: The propagation of ion-acoustic solitary waves in inhomogeneous plasma with spatial density
gradient in ions has been investigated. The fluid equations for ions have been treated by reductive
perturbation analysis technique. In this formulation process we have used a spacgime stretched coordinates.
The system of equations has been reduced to a modified KorteweglezVries (mKdV) equation. The soliton
solutions are found to be affected by density gradient in ions. The effective conditions for soliton propagtion
in inhomogeneous plasma have been analysed.
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Introduction:  The study of nonlinear acoustic waves have a great deal of interest, both theoretically and
experimentally, since the concept was first augmented by Washimi and Tanuity [1ihrough a nonlinear wave
equation known as Korteweg de-Vries(KdV) equation [2]. As the solitons are formed with the combined effect
of nonlinearity and dispersion, which are very stable, create neither fission nor fusion in their own interactions
and it describes the characteristics of the interaction between the waves and the plasmaso propagation of
solitons are also important for many scientific observations in laboratory plasmas as well as in many other
astrophysical  plasmag3, 4, 5, 6] However, most of the studies on the formation of solitons were limited to
homogeneous (uniform) plasma. In practice, inhomogeneity exists widely in plasmas both in the laboratory as
well as in space due to the density gradient or that of temperature ort could be due to the magnetic field in
space. So propagation characteristics are influenced significantly by plasma inhomogeneities. Sakanakg and
Tappet [8] studied the propagation of ion acoustic waves in inhomogeneous (non uniform) plasma with warm
adiabatic ions. The soliton propagation in weakly inhomogeneous plasma has been studied first by Asar{@]
and then ion acoustic case by Nishikawa and Kay10] and Gell and Gomberoff[11]. These studieshave an
inconsistency due to the neglect of zerothorder quantities like ion-fluid velocity and electric field which are
arise due to the presence of inhomogeneity. Later Rao and VermfL2]eliminated these shortcomings by using
A OECEO OAO 1T &£ OOOOAOGAEAA Al T OAET AéddsGisterh BiBo® thenOUSIAO A
these types of stretched coordinates; many researchers had studied different characteristic properties of soliton
propagation analytically as well as in laboratory for different inhomogeneous plasma modelg§1323] . Very
recently Gogoi and Deka[24] have studied dust acoustic solitary waves in inhomogeneous plasma with dust
charge fluctuations.

In this paper, we have derived a modified KdV equation in spatially inhomogeneous plasma with density
gradient of ions. The reductive perturbation analysis of fluid equations is carried out by employing a set of
OOOOAOAEAA AT T OAET AOA éndmobeddd@iplsod&E AOA £ O OPAOEAI 1T U E
Basic Equations: We have considered an unmagnetised spatially inhomogeneous and collisionless plasma
having density gradient of the ions. In this plasma model we consider that the ions are cold with thermal
electrons. The continuity and momentum equation for this plasma model with Poisson equation are as follows:
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and x and t are space and time variables.
We normalized the plasma parameters as

_n L fKTe _KT./ o =ﬁ,onoe2 /KT
N ~ uF Ai —lgég, t m X X I/{pnoez

where N, is the ion density of the equilibrium state.
The normalized forms of the above equations are

B+ Hny) =¢ (2.1a)
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Derivation and Solution of the Modified KdV Equation: In order to investigate the propagation

characteristics of solitary waves for fast and slow modes, we derive a modified KdV (mKdV) equation for our
present plasma model. For this, a set of spatial stretched coordinatel25], is used which is appropriatefor
specially inhomogeneous plasma, along with the zeroth order fluid velocities as

ax o}
X= & -t § £ %X (3.1)
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determined later in a self consistent manners.
Since N, and /, are independent of t, we have

by _ Ko
—=— 9
% L (3.2
Substituting equations (3.1) and (3.2) into equations (2.1 (2.3) we get
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To employ the reductive perturbation technique [1], the plasma parameters n, u andf are expressed as a
power series in€ as

f=f,+ef, +&f, &8 .+. (3.6)

where f © n,uandf and n, U, and f, are the plasma parameters in unperturbed state.
From the zeroth-order equations of (3.3)z (3.5) together with eqn. (3.2), we get% =0 and f0 =0 (3.7)
X

Now using (3.6) into equations (3.3)z (3.5), the lowest order coefficients of € gives

IMRF Biannual Peer Reviewed (Referred) International Journal | SE Impact Factor 2.03 / 59



UGC Approved Journal - Sl No 1814 Journal No 43832

ol WL T - W L S o
S ek AL ONE e R nu,) O (3.8)
W X o/ X(uu?)
S B LR R (3.9)
W Hx o Pty Ipox o
-nf, N G (3.10)
Integrating these equations and using boundary conditions U,,/,- 0, n,=u, ={ and n,,/,- 1as
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Using equation (3.9) with simple algebra, we get
_PnQ+R

In equation (3.13) we see that the left hand side is a first order perturbation while the right hand side contains
only zeroth-order quantities. Thus, in order to obtain nonsecular solution of ¢, numerator and denominator

of equation (3.13) mst be equal to zero separately3]. These yields

2
('/o'uo) 4, (3.14)
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which is a self consistent relation between N, and U,. Eq. (3.14) shows the existence of two types of phase

velocities, fast and slow, corresponding to which two types of waves may be possible. The positive sign and
negative signs in the right side give the fast mode and slow mode respectively.
For second orde of €, we obtain the following equations
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Using equation (3.14),we can eliminate all the second order quantities from above three equations exactly.
Substituting for N, and U, in terms of fl from equation (3.11) into equations (3.16)(3.18), we get the following
modified KdV equation as

Wy oap MW o "HF
—+A— B e€ef 0 (3.19)
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Here A, B, and C are all functions of . Eq. (3.19) is a modified form of KdV(mKdV) equation as the term
with coefficient C is an additional term (inh omogeneity) which arises due to the presence of density gradient

in the plasma. In order to obtain the solitary wave solution of eq. (3.19) in inhomogeneous plasma, we use a
variable transformation as

f,= yexp(€n,) (3.21)

Using this variable transformation Eq. (3.19) transforms to a well known form of KdV equation as

3
W, Ay ¥ g ¥e (3.22)

Vs wo gz
where A = Aexp( Cn).

We have assumed that the nonlinear ceefficient functionally depends on the space of the plasma. For
the sake of simplicity of mathematical calculations, the variations are assumed to be negligibly small as
compared to the scale length and due to this it is assumed that all parameters could be locally constant. Under
these situations, to obtain a steady statesolution of the Eq. (3.22), we introduce a new variableX =x U |

with respect to a frame moving with velocityU which transforms the pair variable (X, ) to a single variable

X . We have obtained the solution of this equation following the method of Kodama and Taniuty [26] as

ax
y = ymSecHa%N : (3.23)
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where the amplitude ), =2 and the width \y =&
YA & ¢

Results and Discussion: We now investigate the influence of the inhomogeneity(density gradient) on the
propagation of ion acoustic solitary waves in fast as well as in slow modedn Figs. 1 & 2, the variations of

soliton amplitude Ym are shown against the ion number density N, for three different values of ion fluid
velocity U, (= 0.1, 0.15, O.?. Fig. 1 shows the increase of soliton amplitude (fast mode) with nearly constant

rate for increasing values of ion number density i and ion fluid velocity u. In case of slow mode solitary wave,
amplitude decreases with nearly constant rate for increasing values of ion number density iand ion fluid
velocity ug.

The variations of soliton width against the ion number density N, for three different values of ion fluid velocity
U, (= 0.1, 0.15, O.? are shown in Figs. 3 & 4. It is shown that the soliton widths decrease with increasing

values of ion number density n, for fast as well as slow modes. In @&se of fast mode, for greater values of ¢
soliton widths are smaller (Fig. 3) which is opposite in case of slow modes (Fig. 4).
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Fig.3 (Fast Soliton): Variations of Width W Fig.4 (Slow Soliton): Variations of Width ~ Wagainst
Against Density Gradient N, for Different Values Density Gradient N, for Different Values of
of u,(=0.1, 0.15, 0.2 u,(=0.1, 0.15, 0.2

Conclusion: In summary, a modified KdV (mKdV) equation is derived by employing aset of suitable stretched
coordinates and reductive perturbation technique. A solitary wave solution of the mKdV equation is derived.
The propagation characteristics in inhomogeneous plasmas are investigated for fast and slow modes phase
velocities. The numerical results show that the inhomogeneity parameter has remarkable influence on the
propagation characteristics of ion acoustic waves.
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Abstract: Graph Theory provides plenty of models fitting in practical situations arising out of real world
problems. Getting students' feedback and analyzing it is a crucial factor. Signed graph is a graph whose edges
are assigned positive or negative sign. Signed graphs are also known as Sociogsasince they have got a lot of
applications to Sociology. This paper presents a part of the analysis of students' feedback on ' using signed
graph models. The procedure to calculate weightages and average percentage weights are described and
number of positive edges in the associated signed graph is taken as the main measuring scale.

Keywords: Signed graph, Balanced signed graph, Graphical model, Weightages.

Introduction:  For any educational institution, among the assessments and accreditations the mamum

weightage should be given to that by students. Student perceptions of the qualities of their learning experience

represent a very important element of effective assessment particularly when they are systematically collected

from a representative sampé of students. The governing body of an institution may feel satisfied only when
AobAAOAOGET 1O AOA T A0 AGAARARAAAA AU OEA OOOAAT 060 PAOAADO

For this purpose student feedback is collected annually in our college. Such constructive nasures should
always be moved to a higher level. It is strongly felt that the information obtained from students of many
colleges will help us to improve the conditions that contribute to learning and development and to the quality
of the experience of thase who will come after us.

AEEO 11 OEOAOAA OO o661 OAEA A DPOIEAAO 11 OEA OI PEA O%@bA
OOOAAT 666 ' O OEA EEOOO OOAPh OEA NOAOOGEI1TT AEOA xAO POA
1. It should be answerable wthin 30 minutes.

2. It should help the respondents to learn some valuable things about themselves.

3. The answers should provide a kind of seHportrait and hence make them understand how they are

benefitting from their college experience.
4. 1t should cover all the services and supports that students identified as necessary to support their academic
studies.

As the second step, survey was carried out among students belonging to 30 colleges selection was purely on
accessible basis. Apart from this, a localized swey was simultaneously carried out. Ten departments of our
college were taken for study and from each department 5 responses were received. Following data collection,
the data needs to be critically analyzed. For any research, data analysis is very impartt as it provides an
explanation of various concepts, theories, framework and methods used. It eventually helps in arriving at
conclusions and proving the hypothesis.

Data analysis helps in structuring the findings from different sources of data. It is \ery helpful in breaking a
macro problem into micro parts. Data analysis acts like a filter when it comes to acquiring meaningful insights
out of huge data set. To study graph theory without being aware of its application is to miss a major part of its
subgance. The art of model formulation in science and engineering by using graph is a fruitful common
aspect. Analyzing graphs adds much too theoretical part of Mathematics whereas analyzing a survey using
graphs adds so much to applied part of it.

This paper presents the applications of Graph theoretic tools to analyses the data.
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Calculation of Weightages and Deviations Procedure:
Stepl: Pinpoint the factor to be focused.
Step2: Choose all the questions related to the factor under consideration.
Step3: Forany question scores are allotted as follows

Response Score Number of Responses
Excellent 1 ne

Good 0.75 ng

Fair 0.50 nf

Worst 0.25 nw

Weightage = ne + 0.75ng + 0.5nf + 0.25nw

Step4: Total weightage = sum of the weightages of questions chosen in step2.

ISSN 22788697

Step5: Deviation between two categories = absolute difference between total Weightages of thosategories.

Step6: Average deviation percentage =

guestion)

(Deviation x 100) / (Number of responses x Number of

The main aim of our project is to compare the available facilities and their levels. So we focus on the factor,

facilities.

There are 15 quesbns in our questionnaire related to this factor under consideration. In the following table
gives the weightages of all the 15 questions for ten courses taken for study.

Example: 1
Discipline PG MCA | MBA uG PG PG PG PG PG PG
(Che) (Maths) | (Tamil) | (Maths) | (Com) | (Bio -che) | (Eng) | (His)
1 4 4 4 3 3.25 4 4.75 3.75 3.75 | 4.25
2 375 | 325 | 35 3.25 3.75 4.75 4.5 3.25 3.5 2.5
3 3.25 | 2.25 3 2.25 4 2.25 3 2.75 225 | 4.25
4 3.5 275 | 3.25 1.75 2.75 4.5 4.75 3 3.5 3.25
5 2.5 3 4 4 4 4.25 4.5 3.75 3 4.25
6 3.25 | 3.75 | 4.25 3.5 4 4.5 5 3.25 3.25 | 3.25
7 3.75 | 3.25 | 4.25 3.5 4 5 5 4.5 3.25 3
8 3.75 4 3.5 3.5 3.5 3.75 4.5 4 3.5 3
9 4 275 | 3.75 2.25 2.25 2.5 4 3.75 3 2
10 4 2.5 4 2.75 3 2.5 2.5 3.5 2 2.25
11 3.25 2 3.25 3 2 4.5 2.5 2.5 3.5 2
12 3.5 3.25 3 4.25 3.75 4 3.75 3.25 2.25 4
13 3.25 3 3 3 3.25 2.75 3.25 2.5 3.5 4
14 3 4 3.25 3 3.5 3.5 4.5 3.5 3.75 3
15 3 225 | 3.25 2.5 4.75 3.5 2.75 3.75 2.5 2.25
Total 51.75| 46 | 53.25 45.5 51.75 56.25 59.25 51 46.5 | 47.25
Example: 2

Deviation between two disciplines =

disciplines.

Deviation(Self -Financed):

Discipline PG(Che) | MCA MBA | UG(Maths) | PG(Tamil)
PG(Che) 0 5.75 15 6.25 0
MCA 5.75 0 7.25 0.5 5.75
MBA 15 7.25 0 7.75 15
UG(Maths) 6.25 0.5 7.75 0 6.25
PG(Tamil) 0 5.75 15 6.25 0

Deviation has been calculated taking all the responses for all the questions. So we take
Average deviation percentage= (Deviation x 100) / (Number of responses x facilities)
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Average Deviation Percentage (Self -Financed):

Discipline PG(Che) MCA MBA | UG(Maths) | PG(Tamil)
PG(Che) 0 7.67 2 8.34 0
MCA 7.67 0 9.67 0.67 7.67
MBA 2 9.67 0 9.67 2
UG(Maths) 8.34 0.67 9.67 0 8.34
PG(Tamil) 0 7.67 2 8.34 0

Signed Graph Model: A signed graph is a graph whose arcs are labeled by signs +agd A network is cycle
balanced if the product of the weights of the lines of every cycle in it is positive.

Procedure to Construct Signed Graph Model: Represent categories by vertices join tw vertices by a
positive edge if deviation percentage is below 10%. Join two vertices by a negative edge if deviation percentage
is above 20%.We like to analyze the significance of deviation between categories. Depending on the situation
we set some levelsif deviation is considerably small, then we join the corresponding categories by a positive
edge. We set a range for deviation which need not be considered. If it exceeds the upper limit, use negative
edge to join the categories. Obviously humber of podive edges in the signed graph model can be used to
measure the quality of factor under consideration.

Example: 3
The signed graph model for example2 is given below.

4 3

Figure 1: Deviation Graph (Self -Financed)
The graph happens to be a complete graptwith positive edges. This indicates thatall the facilities are equally
enjoyed by all the departments.

Example: 4
Average Deviation Percentages (Aided
Discipline PG(Maths) | PG(Com) | PG(Bio-che) | PG(Eng) | PG(His)
PG(Maths) 0 4 7 13 12
PG(Com) 4 0 11 17 16
PG(Bio-che) 7 11 0 6 5
PG(Eng) 13 17 6 0 1
PG(His) 12 16 5 1 0
1
5
2
4 3

Figure 2: Deviation Graph (Aided)

Journal Published by IMRF Journals | July 2017 Edition / 66



Mathematical Sciencesnternational Research Journal Volume 6 [ssue 2 ISSN 22788697

Number of positive edges=5

Percentage of positive edges=50%.

There are a medium percentage of positive edges. This indicates that all the facilitieare not equally enjoyed by
all the departments. There is no negative edge. So disparity is not noteworthy. The reason may be the nature of
the course.

Interpersonal Relationships:  The factor much more important than the facilities is the Staff - Students
relationship.
We give special attention to the question related to this factor.

Deviation (Staff - Students):

— PG UG PG PG PG PG PG | PG
Discipline | (o) [ MCA | MBA | \1oths) | (Tamil) | (Maths) | (Com) | s(Bio-che) | (Eng) | (His)
PG(Che) | 05 | 15| 0 1 0.25 15 1 0 05 | 0.25
MCA 1 | 0 | 15| 05 1.75 0 05 15 1 | 175
MBA 05 | 15| 0 1 0.25 15 1 0 05 | 0.25
UG(Maths) | 05 | 05 | 1 0 125 | 05 0 1 05 | 125
PG(Tamil) | 0.75 | 1.75| 025 | 1.25 0 175 | 1.5 0.25 075 | 0
PGMaths) | 1 | 0 | 15 | 05 175 0 05 15 1 | 175
PG(Com) | 05 | 05 | 1 0 125 | 05 0 1 05 | 125
PG(Bioche)| 05 | 15 | 0 1 0.25 15 1 0 05 | 0.25
PG(Eng) | 05 | 15| 0 1 0.25 15 1 0 05 | 0.25
PG(His) | 075 | 1.75| 025 | 1.25 0 175 | 1.25 0.25 075 | 0
Average Deviation Percentages (Staff - Students):
— PG UG PG PG PG PG PG | PG
Discipline | oy | MCA | MBA 1\ ihs) | (Tamil) | (Maths) | (Com) | (Bio-che) | (Eng) | (His)
PG(Che) | 0 | 20 | 10 10 15 20 10 10 0 | 15
MCA 20 | 0 | 30 10 35 0 10 30 20 | 35
MBA 10 | 30 | 0 20 5 30 20 0 10 | 5
UG(Maths) | 10 | 10 | 20 0 25 10 0 20 10 | 25
PG(Tamil) | 15 | 35 | 5 25 0 35 25 5 15 | 0
PG(Maths) | 20 | 0 | 30 10 35 0 10 30 20 | 35
PG(Com) | 10 | 10 | 20 0 25 10 0 20 10 | 25
PG(Bioche)| 10 | 30 | 0 20 5 30 20 0 10 | 5
PG(Eng) | 0 | 20 | 10 10 15 20 10 10 0 | 15
PG(His) | 15 | 35 | 5 25 0 35 25 5 15 | 0

Figure 3: Staff - Students Relationship
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Number of positive edges=16 Number of negative edges=12
Percentage of positive edges=35.5%  Percentage of negative edges=26.67%

The prevailing situation according to the survey suggests to go for yet survey for this single factor. All types of
counseling are provided. In spite of that there is a dscrepancy in staff- OO OAAT 08 O OA1 AOEIT 1 OEED
be made to undergo a short course in assessing the personal relationship. After that a survey can be carries out.

Based on that new survey remedial measures can be taken.

Conclusions: In this paper we have given number of positive edges. Plenty of other concepts such as balanced
signed graph consistency of signed graph etc. are available in lecture. These concepts can be utilized for any
indences study.
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EFFECT OF THERMAL RADIATION CONVECTIVE HEAT
TRANSFER FLOW OF A ROTATING NANGFLUID
IN A VERTICAL CHANNEL
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Abstract: We investigate the effect of thermal radiation on steady convective heat transfer flow of a nanofluid
in a vertical channel in the presence of heat generating sources. Analytical closed form solutions are obtained
for both the momentum and the energy equations. Graphs are used to illustrate the significance of key
parameters on the nanofluid velocity and temperature distributions.

Keywords: Thermal Radiation, Heat transfer, Nanofluid, Vertical Plate.

Introduction:  Nanofluids are solid-liquid composite materials consisting of solid nanoparticles or nanofibers,
with sizes typically on the order of 100 nm, suspended in a liquid. Nanofluids are characterized by an
enrichment of a base fluid like water, toluene, ethylene glycol or oil with nanoparticles in variety of types like
Metals, Oxides, Carbides, Carbon, Nitrides, etc. Today nanofluid are sought to have wide range of applications
in medical application, biomedical industry, detergency, power generation in nuclear reactors and more
specifically in any heat removal involved industrial applications. The ongoing research ever since then has
extended to utilization of nanofluids in microelectronics, fuel cells, pharmaceutical processes , hybridpowered
engines, engine cooling, vehicle thermal management, dorastic refrigerator, chillers, heat exchanger, nuclear
reactor coolant, grinding, machining, space technology, Defense and ships, and boiler flue gas temperature
reduction [Agarwal et al. (2011)]Indisputably, the nanofluids are more stable and have accepatble viscosity and
better wetting, spreading, and dispersion properties on a solid surface [Akbarinia et al. (2011), Nguyen et al.
(2007)]. Several reviews [Ghadimi et al.(2011), Mahabudul et al. (2012)] on nanofluids with respect to thermal
and rheologicd properties have been reported.

Thus, nanofluids have an ample collection of potential applications in electronics, pharmaceutical processes,
hybrid -powered engines, automotive and nuclear applications where enhanced heat trarfier or resourceful
heat dissipation is required. In view of these, [Kiblinski et al. (2002)] suggested four possible explanations for
the anomalous increase in the thermal conductivity of nanofluids. These are nanoparticles clustering,
Brownian motion of the particles, molecular level layering of the liquid/particles interface and ballistic heat
transfer in the nanoparticles. Despite a vast amount of literature on the flow of nanofluid model proposed by
[Buongiorno (2006)], we are referring to a few recent studies [Alsaedi et al.(@12), Hajipour and Dekhordi
(2012),. However, we are following the nanofluid model proposed by [Tiwari and Das (2007)], which is being
used by many current researchers [Hamad and Ferdows (2012), Hamad and Pop (2011), Norifiah et al. (2012)] on
various flow fields.

The study of MHD flow and heat transfer due to the effect of a magnetic field in a rotating frame of reference
has attracted the interest of many investigators in view of its applications in many industrial, astrophysical
(dealing with the sunspot development, the solar cycle and the structure of a rotating magnetic stars),
technological and engineering applications (MHD generators, ion propulsion, MHD pumps, etc.) and many
other practical applications, such as in biomechanical problems (e.g., lmod, flow in the pulmonary alveolar
sheet). Many authors have studied the flow and heat transfer in a rotating system with various geometrical
situations [Hickman(1957), Hide (1960), Mazumder (2012)]. [Hamad (2011)] investigated the effect of a
transversemagnetic field on free convection flow of a nanofluid past a vertical semiinfinite flat plate. Recently,
[Satya Narayana et al. (2013)] studied the Hall current and radiation absorption effects on MHD micropolar
fluid in a rotating system. Some other relhted works can also be found in recent papers [Kameswaran et al.
(2012), Kesavaiah et al. (2011), Rushi kumar and Sivaraj (2013), Srinivas et al. (2012)].

Thermal radiation is important in some applications because of the manner in which radiant emissiondepends
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on temperature and nanoparticles volume fraction. The thermal radiation effect on mixed convection heat
transfer in porous media has many important applications such as the sensible heat storage bed, the nuclear
reactor cooling system, spacetechh 1 T CUh AT A OT AAOCOI 6T A 1 OAT AAO xAOOA
knowledge (from the literature), no studies have been communicated thus far with regard to the study of flow

and heat transfer distinctiveness of a nanofluid past a vertical platewith thermal radiation in a rotating frame

of reference

Recently [Satyanarayana et al (2011)] have studied the effect of radiation on the convective heat transfer flow of
a rotating nanofluid past a porous vertical plate with oscillatory velocity.

In thi s paper we investigate the effect of thermal radiation on steady convective heat transfer flow of a rotating
nanofluid in a vertical channel in the presence of heat generating sources. Analytical closed form solutions are
obtained for both the momentum and the energy equations . Graphs are used to illustrate the significance of
key parameters on the nanofluid velocity and temperature distributions.

Formulation of the Problem:  We consider the steady, three dimensional flow of a nanofluid consisting of a
base fluid and small nanoparticles in a vertical porous channel with thermal radiation. A uniform magnetic
field of strength Ho is applied normal to the plate. It is assumed that there is no applied voltage which implies
the absence of an electric field.The flow is assumed to be in the xdirection which is taken along the plane in

an upward direction and z-axis is normal to the plate. Also it is assumed that the whole system is rotating with

a constant angular velocity vector\W about the z-axis. The fluid is assumed to be gray, absorbing emitting but
not scattering medium. The radiation heat flux in the x-direction is considered negligible in comparison with
that in the z-direction. As the flow is fully developed, the flow variables are functions of z and t only. Figure. 1
shows that the problem under consideration and the ccordinate system.

Under the above mentioned assumptions, the equation of momentum and thermal energyrespectively ,can be
written in dimensional form as :

W _ (2.1)
z
1
w2 w =—(ﬂzf—ﬁu (9T T) ( L 22
IJZ rnf Ia2
1Y _1 v o2
W—+2 W =—(m,— (-sgH’)V) (2.3)
”Z rnf f |Z2
HT o W1 pe) Qn o
Mg Tl w?  (rCpnf 12 oy ) @4)
The boundary conditions are(see rf.(42&43)):
ucL)=0 v(°L) =0,
T-L=Ty , T(+L) =T, (2.5)

The properties of the nanofluids are defined as follows (see ref.(4416)):
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